
 

E190AX Advanced Digital Design 
Lab 1: RISC-V Software, Simulation, and Testing 

 
The goal of this lab is to learn to: 
 

●​ assemble and disassemble programs with the RISC-V GCC compiler 
●​ simulate RISC-V programs with the riscvOVPsimPlus virtual platform simulator 
●​ simulate and debug the riscv-wally SystemVerilog with Verilator and Questa 
●​ write your own test cases 

 
Collaboration Policy 
 
You may work with others on the tutorial parts of this lab, so long as you make sure you 
understand how to do all the steps yourself and make sure everyone you are working 
with understands how to do the steps.  You need to debug the Verilog yourself and write 
your own test cases, but you may talk with others about solving computer/software 
problems and about general strategies to approach the lab. 
 
Getting Started 
 
If you don’t already have a Slack account, go to slack.com and register for one.  Send 
your username to Prof. Harris to be added to hmc_e190ax. 
 
If you don’t already have a github account, go to github.com and register for one.  Send 
your username to the class Git czar to be added to the davidharrishmc/riscv-wally 
repository. 
 
You should have received an email with your tera.eng.hmc.edu login and password.  
Review the Hitchhikers Guide to Tera tutorial. Install x2go or your preferred X client and 
log into Tera.  If you aren’t already a skilled Linux user, this is the time to get 
comfortable.  Open a terminal and practice getting around without relying on a GUI. 
 
If you aren’t already familiar with Git, review Prof. Stine’s Git tutorial. Follow the 
directions on the last slide to clone the davidharrishmc/riscv-wally repository into your 
home directory.  Poke around and get a sense of what is there. 
 
If you haven’t already done so from the end of the git tutorial, go to your home directory 
and clone the repository now: 
cd ~ 
git clone https://github.com/davidharrishmc/riscv-wally 
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Assembling and Disassembling Programs with GCC Toolchain 
 
The GCC RISC-V cross-compiler is installed on Tera.  We will use it to compile RISC-V 
assembly language programs into Executable and Linkable Format (ELF), a binary 
machine language format that can run on a RISC-V processor or simulator. 
 
We’ll be using the Imperas test suite of assembly language programs to check that 
instructions execute correctly. Make a directory for Lab 1 and copy over the RV64I ADD 
test program: 
 
mkdir ~/lab1 
cd ~/lab1 
cp ~/riscv-wally/imperas-riscv-tests/riscv-test-suite/rv64i/src/I-ADD-01.S . 

 
Open Visual Studio Code by typing code or using the Applications * Accessories * 
Visual Studio Code menu. Open I-ADD-01.S and look at the first part.  You’ll see it loads 
two randomish 64-bit numbers into registers x16 and x31, adds them into x1, and stores 
the result into memory at a label “test_1_res.” The RVTEST_IO_ASSERT_GPR_EQ 
macro in the Imperas suite doesn’t actually check anything, but is helpful for us as 
humans to know the answer should be 0xF07C7631C0061DB8.  The program does the 
same for many different values and registers and stores all the results to memory to 
create a “signature” that should only be correct if all of the instructions in the program 
work correctly. 
 
Assemble the program using the long and horrible command (suggest cutting and 
pasting it in) 
riscv64-unknown-elf-gcc -nostdlib -nostartfiles -march=rv64g I-ADD-01.S 
-I../riscv-wally/imperas-riscv-tests/riscv-test-env 
-I../riscv-wally/imperas-riscv-tests/riscv-test-env/p 
-I../riscv-wally/imperas-riscv-tests/riscv-target/riscvOVPsimPlus 
-T../riscv-wally/imperas-riscv-tests/riscv-test-env/p/link.ld -o I-ADD-01.elf 

 
The -march flag indicates a machine architecture of RV64G (RV64IMAFD). Other flags 
tell the assembler not to include standard libraries or startup files, and to look in certain 
search paths for Include files and for the linker file specifying where the code and data 
segments go in memory. 
 
Then disassemble the assembly language into machine language using: 
riscv64-unknown-elf-objdump -d I-ADD-01.elf > I-ADD-01.elf.objdump 
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Look at the machine language .objdump file. (You can use View * Editor Layout * Two 
Columns and drag one of the files to the other column to see them side by side). Each 
line indicates the address, the machine language code, and the disassembled assembly 
code. You’ll see some of the included setup code at the beginning that was not visible in 
the .S file. The simulator begins at address 0x80000000 on reset.  The program 
initializes some of the Control and Status registers (CSRs) including the trap handler 
vector (MTVEC), loads the start of the testcode (0x80000100) into the Machine 
Exception Program Counter (MEPC), and performs a MRET to jump to the MEPC.  At 
0x80000100, the program from the .S file begins. It loads t1 with 0x80003000, which is 
where the signature is stored.  The li pseudoinstruction translates into a series of adds 
and shifts to form the 64-bit immediate.  At 0x80000148, the add takes place (note that 
registers x1, x31, and x16 are also known as ra, t6, and a6 and are reported as such by 
the disassembler). Then the sd writes the result to the address given by t1 to save the 
signature.  Similar code repeats for many more test cases. 
 
Compiling and Disassembling Programs with GCC Toolchain 
 
You can also compile C programs using the same flow. 
cp ~/riscv-wally/imperas-riscv-tests/riscv-ovpsim-plus/examples/fibonacci/fibonacci.c . 

riscv64-unknown-elf-gcc -march=rv64g fibonacci.c -o fibonacci.elf 

To disassemble an ELF into RISC-V assembly and machine language: 
riscv64-unknown-elf-objdump -d fibonacci.elf > fibonacci.elf.objdump 

 
Open fibonacci.c and fibonacci.elf.objdump in Visual Studio Code.  Compare the fib 
function at lines 23-25 of the C program to the assembly language at lines 68-102. Look 
for how the assembly language saves and restores registers, compares the input to 1, 
makes recursive function calls, and returns the result in a0.  Also notice how the 
compiler does some dumb and unnecessary things with moving registers around. 
 
See if turning on compiler optimization helps.  Recompile with the -O1 flag: 
riscv64-unknown-elf-gcc -march=rv64g -O1 fibonacci.c -o fibonacci1.elf 

and then disassemble again.  The assembly language code should look much cleaner. 
 
If a bit of optimization is good, how about going all the way with -O3 instead? Now you’ll 
find fib bloated to 230 lines!  The compiler unrolled the code to reduce the overhead of 
recursive function calls at the expense of a much larger program. 

 

Simulating RISC-V Programs with Imperas riscvOVPsimPlus 
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Imperas makes Virtual Platform simulators for various computer architectures. The 
simulators use a Just-in-time code-morphing to translate the simulated architecture into 
machine language on the real host computer so the simulation runs remarkably fast. 
 
Simulate the addition program using the command: 
 
riscvOVPsimPlus.exe --trace --traceregs --variant RV64GC --program I-ADD-01.elf > trace 

 
Open the trace file in Visual Studio Code and compare against the disassembled 
program.  You’ll see a series of lines including the program counter, machine language 
instruction, and disassembled instruction, followed by a line showing the change to the 
destination register.  Follow the trace through the first 122 lines as the system follows 
the reset vector, configures some CSRs (details aren’t interesting), and starts executing  
the testcode at line 84.   
 
Try simulating fibonacci.elf in the same way.  You can turn off the tracing to speed it up. 
 
riscvOVPsimPlus.exe --variant RV64GC --program fibonacci.elf > trace 

 
The Imperas suite also comes with the CoreMark program, a benchmark commonly 
used for ARM and RISC-V processors despite its known limitations (see Hennessy & 
Patterson for details).  It contains kernels of matrix multiply, linked list, and FSM code 
that emphasize arithmetic, memory, and branching performance. Run CoreMark in 
simulation using: 
 
cd ~/riscv-wally/imperas-riscv-tests/riscv-ovpsim-plus/examples/CoreMark 
./RUN_RV32_CoreMark.sh 

 
You’ll see it runs 1.6 billion instructions in about 2.2 seconds of host computer time, or 
750 million instructions per second, remarkable for an instruction simulator. You should 
see it report CoreMark 1.0 : 43.07746.  
 
Extra credit for the first to track down how this relates to CoreMarks/MHz (43/100 = 
0.43, which seems unrealistically slow). 
 
Building the Imperas Test Suite 
 
The Imperas test suite has assembly language test programs for each instruction in 
each variant of the architecture in  
 
imperas-riscv-tests/riscv-test-suite 
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Poke around the directories to see what is there. You don’t need to be concerned with b 
(bit manipulation), k (crypto), or v (vector) extensions, which we are not implementing 
and which are not compiled by default.  Look at the assembly language files in the src 
directories and the signature reference_output files in the references directories. 
 
It would be extremely tedious to individually compile and test each test.  Imperas 
provides a hierarchical set of Makefiles to automate the process.  It is good to learn 
about Makefiles, but these are unusually complex and are likely only interesting if you 
are already an experienced make user. 
 
Build the entire test suite with 
 
cd ~/riscv-wally/imperas-riscv-tests 
make 
 
Note: if you’ve opened an additional terminal window, you may need to run the setup 
script before it can find the paths: 
 
source /cad/scripts/setups/S21/riscv-setup 
 ​  
The make script assembles every .S file to make an .elf file in the work directory, and 
runs objdump to produce a disassembled version.  It runs riscvOVPsimPlus on every elf 
file, saves the signature in a .signature.output file, compares it against the 
.reference.output file, and reports any discrepancies that would be cause by a 
messed up assembly language file.  HMC has modified the make script to also run 
exe2memfile.pl to convert each .elf to a hexadecimal memory file suitable for Verilog 
to load with $readmemh.  Make is smart and looks at creation dates, so if you run it 
again, it will only recompile test files that you changed. 
 
If you ever think the build could have been corrupted, you can run a fresh build by 
removing all of the work directory and then reinvoking make 
 
make allclean 
make 
 
One of the learning objectives of this course is to become comfortable automating tasks 
wherever appropriate.  At first it will take you longer to automate than to do the task 
manually, but as you do repetitive tasks over the semester, you’ll be glad you’ve 
automated them, and you’ll also get faster at developing the automation.  Each of you 
come from different backgrounds and are familiar with different tools and languages; 
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you can use whatever is natural for you, but also take the time to learn from others and 
share your techniques with your classmates. 
 
Simulating riscv-wally SystemVerilog with Verilator & Questa 
 
This class starts with riscv-wally, a pipelined processor model in SystemVerilog.  It is a 
parameterized extension of the pipelined processor from Digital Design & Computer 
Architecture RISC-V edition that supports all of the RV32/64 instructions, the C 
compressed instructions, and privileged operations (CSRs, exceptions, and interrupts).  
It passes all of the Imperas tests, although test coverage is woefully thin on the 
privileged portions. 
 
Look in ~/riscv-wally/wally-pipelined/src.  Poke around the code and figure 
out how it is structured and what the testbench does.  You’ll see that it loads all of the 
Imperas tests from the .elf.memfile files, runs them, and checks that the results in 
memory match the .signature_output. 
 
We will simulate with Questa, the industrial-strength version of ModelSim from Mentor 
Graphics.  The Questa warnings are not terrific, so we will use another open-source tool 
called Verilator with a good “lint” feature to first catch all the bugs that can be found at 
compile time. 
 
Run Verilator lint with: 
 
cd ~/riscv-wally/wally-pipelined 
verilator --lint-only --top-module wallypipelinedsoc 
-Iconfig/rv64ic src/*/*.sv 
 
Alternatively, this is automated in a one-line script to save you typing: 
 
./lint-wally 
 
You should get no warnings because the code provided is clean. 
 
Now you can simulate with Questa either at the command line or with the GUI and 
waveform window.  The command line version doesn’t save all the internal signals so it 
is about 10x faster and is preferred if you just want to verify that the code runs correctly. 
 
Run the command line with  
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cd regression 
./sim-wally-batch 
 
You should see it run all of the tests and print SUCCESS! at the end, or report any 
failures (there should be none).  Look in the script to see how it invokes a .do file, and 
look at the .do file to see how it compiles and runs the code automatically.  Also notice 
how the script provides the rv64ic configuration.  Look at the wally-config.vh file in that 
directory specifying XLEN, MISA, and other characteristics of the configurable 
processor. You could run on a different configuration by specifying the file. 
 
Next look at sim-wally, which invokes the GUI, and look at the corresponding 
wally-pipelined.do file, which uses the +acc flag to keep accessibility of all 
internal signal for debugging, and the add wave commands to add all of the signals, 
with the most interesting ones at the top.  It defaults to config/rv64ic. Run the script with 
the command​
./sim-wally 
and watch the first test program (rv64i/I-ADD-01) run. You should see the program 
counter start at 0x8000000, and then the initialization stuff runs. Scroll until the program 
counter reaches 0x80000100 and compare against the objdump file to watch the 
simulation, load registers x31 and x16, add into x1, and store the result into memory at 
0x80003000.  Review the waveforms until you understand what each of the stages of 
the pipeline is doing up through the first sd instruction at 0x8000014c.  You’ll need to 
understand the waveforms well enough to be able to debug discrepancies in the next 
part, and you may need to review Chapter 7 of DDCA if you haven’t looked at pipelined 
processors in a while. 
 
Note that different tests store their results to different locations in memory.  The 
testbench lists the starting address offset for each test and automatically checks 
appropriately.  The rv32/64i test cases start the body of the program at 0x80000100, but 
the compressed instructions start at 0x800000E4 because the startup code is a little 
shorter.  You don’t need to do anything different to run the simulation, but if you are 
checking results by hand, it’s useful to be aware of these addresses. 
 
If sim-wally fails and you want to make a fix to the Verilog and rerun without waiting for 
Modelsim to close and reopen, you can type into the Modelsim transcript window 
command line: 
 
do wally-pipelined.do 
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Finally, we have a regression script that runs all of the configurations (initially rv32ic and 
rv64ic).  Invoke with 
 
./regression-wally.py 
 
It should print success or failure of each test, and an overall success or failure.  Running 
this entire regression is time-consuming, so you may not want to do so each time you 
check in code.  However, the regression czar should set up a script to run it nightly and 
let team members know if they broke something with a checkin. 
 
Debugging riscv-wally SystemVerilog 
 
The riscv-wally repository has a branch called lab1buggy with four bugs for your 
debugging pleasure.  In this section, you should develop a systematic way to find bugs 
in the Verilog without having to strain your brain very hard. 
 
Switch to the buggy branch by typing 
 
git checkout lab1buggy 
git pull 
 
If you were a git power user, you could diff lab1buggy and the main branch and see the 
bugs I put in, but that would miss the point of the lab.  Instead, let’s get some practice 
digging in and debugging.  However, if one day in the future the processor was working 
and you made some changes and it stops working, it’s well worth using git to examine 
the changes you just made to find the cause. 
 
Now run lint-wally.  You should see a syntax error in datapath.sv.  Use the 
information in the error to find and fix the bug.  Run lint-wally again and check that 
the bug is gone. 
 
Next we’ll walk through debugging one of the substantive bugs.  Run sim-wally.  The 
simulation will hang. Choose Simulate * Break to stop the endless loop.  Yikes, this is 
going to be a hard one. Go to the beginning of the simulation and zoom out until you 
can see the program counter.  You’ll see it start out normally, then get into an endless 
loop through 8000003E 40 44 48 at about 200 ns.  It’s immediately suspicious that the 
program counter should go to 3E, which is not a multiple of 4. 
 
A general strategy is to find the first error we can identify, then trace signals back until 
we can find where the inputs are good and the output is bad, and we’ve localized the 
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problem.  This requires understanding the design well enough to be able to predict what 
the signals should be, but takes no special genius to stare at the code and have the bug 
pop out.  It’s useful to track these things in your engineering notebook because it’s easy 
to get lost about what you were investigating and what you expect.   
 
Let’s look at the test bench and test program to figure out what it should be doing.  
According to the test bench at line 80, the first test is rv64i/I-ADD-01.  Open 
~/riscv-wally/imperas-riscv-tests/work/rv32i/I-ADD-01.elf.objdump.  Sure enough, there 
is no code at 3E.  Let’s trace back and see how the PC got there. 
 
In Visual Studio Code, choose File * Open Folder and open the wally-pipelined/src 
folder.  All of the .sv files in the design should appear in the left column. According to the 
SystemVerilog, PCF is an output of the datapath.  Which module produced it?  Since 
the modules are instantiated with .* notation, we can’t just search in the module and find 
out.  But pclogic sounds promising, and looking in there, we see PCF is an output, 
coming from the pcreg flop, whose input is PCNextF.   
 
Use the sim pane in Modelsim to find the relevant signals. Look under 
testbench/dut/hart/dp/pclogic and drag PCNextF to just under PCF for easy reference.  
We see at time 190 that it becomes 3E, which is bad. According to the SystemVerilog, 
PCNextF comes from UnalignedPCNextF, which comes from the pcmux controlled by 
{PrivilegedChangePCM, PCSrcE}.  These waveforms are {1,0}, which tells the mux to 
select the PrivilegedNextPCM input, which is also 3E, which can’t be right. 
 
It’s easiest to trace this one if you have spent enough time with the code to understand 
where signals are coming from.  Otherwise, use Edit * Find in Files… and enter 
PrivilegedNextPCM, which shows up as an output of trap.sv.  Double-click on that 
search result, and we see at line 67 an always_comb block describing a mux to choose 
PrivilegedNextPCM.  Adding more waveforms from trap, we see PrivilegedNextPCM is 
still 3E here (it could be different in different parts of the hierarchy if we somehow 
misconnected signals).  It doesn’t seem like any of the conditions of the if statements 
are true, and MTVEC_REGW is 3E, explaining PrivilegedNextPCM. 
 
Now, why is MTVEC bad? Looking at the objump, we see mtvec was written at address 
58 with csrw mtvec, t0, and t0 got a value from addi t0, t0, 16 at 54.  t0 is register x5 
(you can look this up in Appendix B).  Let’s scroll back and see if something is wrong 
with t0.  We see the PC was 54 back at time 111.  One pipeline stage later, we see the 
ADDI has reached the Decode stage (time 121). Scroll forward to fin the ADDI in the 
Writeback stage at 152.  Just to be paranoid, we see the PC is still 54 here, as we 
expected.  RegWriteW is 1, RdW is 5, and ResultW is 3e, explaining writing 3E to t0. 
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Why did ADDI produce the wrong answer.  Look back to the Execute stage at 131.  
SrcAE is 4F and SrcBE is 10 and the result is 3e. This doesn’t seem right that 4F + 10 = 
3E.  Let’s look closer at the ALU. 
 
Look at the ALU Verilog to see how it should operate.  Drag some signals into the 
waveforms.  Drag over a and b, which agree with SrcAE and SrcBE.  Look at alucontrol, 
which is 00.  According to line 77, that should be for addition or subtraction, and result 
should get sum.  Look at sum, which is 3e again.  Still bad.  Look at the code again.  
Sum comes from presum, which depends on condinvb.  presum is 3e, still bad.  
condinvb is FFFF...FFEF.  This seems suspicious for an addition.  So we’ve isolated the 
problem to line 41, in which the inputs are alucontrol = 0 and b = 10, and the output is 
condinv = FF..FFEF rather than 10.  Looks like we are inverting when we shouldn’t.   
 
Switch the ~b and b in line 41.  Let’s see check that fixes the problem. Type do 
wally-pipelined.do in the Transcript window to rerun the sim. Another infinite loop.  I 
think I’m going to hate this lab. Break the sim again.  
 
Now scroll to around 200.  Phew, no 3E anymore.  In fact, we see the PC looping 4c 50 
54 now.  Looks like we fixed the condinv bug.  Scroll back and we see the problem 
started somewhere around 100 ns.  Now you’re on your own to fix this third bug. Record 
what it was. 
 
Once you’ve fixed it, there’s a fourth bug still bug lurking.  You’ll find there is no more 
endless loop and most test programs pass, but 7 have errors. Most of the test cases on 
ADDW, SLLW, and a few others are failing.  You could try scrolling through 1.5 million 
ns of simulation to find the first failure, but it’s easier to go into the testbench and copy 
the rv64i/I-ADDW-01 from line 83 the beginning of the tests64i (line 80) so it runs right 
away.  According to the testbench, the 0th test is bad (oh good, easy to locate), and 
simulation is producing f07c7631c0061db8, while the expected signature is 
ffffffffc0061db8.  Looks like something went wrong with the upper bits.  Rerun the sim, 
compare against the I-ADDW-01 objdump to know what should be happening, and you 
be able to locate this bad result early in the simulation.  If you’re in doubt of what 
I-ADDW-01 should be doing as it runs, you can use riscvOVPsimPlus to generate a 
trace of expected register results, and compare that to the ResultW signals when 
RegWrite = 1 (but it’s also good to get used to being able to predict mentally). Squash 
the last bug and record what you did to fix it. 
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When you are all done, don’t check back in your corrected code, or your classmates will 
miss out on the fun of finding the bugs themselves.  Instead, switch back to the main 
branch. 
 
git checkout main 
git pull 
 
Writing new Test Cases 
 
The imperas-riscv-tests are not particularly thorough.  In particular, they don’t test the 
range of operand inputs very well.  We would like to add more design validation test 
cases, yet not so many that simulation becomes painfully slow. A good set of test 
vectors includes directed and random tests. 
 
For example, consideADD.  The vectors should include “corner cases” that are most 
likely to do something unusual. Good 64-bit corner cases include the smallest and 
largest numbers, numbers right near the two’s complement rollover from negative to 
positive, and a random positive and random negative number. 
 
{0, 1, 2, FF, 624B3E976C52DD14, 7FFFFFFFFFFFFFFE, 7FFFFFFFFFFFFFFF, 
8000000000000000, 8000000000000001, C365DDEB9173AB42, 
FFFFFFFFFFFFFFFE, FFFFFFFFFFFFFFFF} 
 
For ADD, let’s create a set of directed vectors consisting of the cross-product of all 12 
corner cases for each input, or 144 vectors.  Let’s also generate 100 completely random 
vectors.  For each vector, let’s place the two inputs in a random pair of registers, subject 
to constraints: 

●​ don’t use the same register for both inputs! 
●​ don’t use x0, which is hardwired to 0 
●​ don’t use x6, which points to a place in memory to store the results. 

 
Look at the wally-pipelined/testgen/testgen-ADD-SUB.py script.  It generates these test 
vectors, including the expected values, for both ADD and SUB.  It then writes a .S 
assembly language program containing the tests, and the .reference.output file with the 
expected result. It does this for both XLEN=32 and 64, and places the .S and 
.reference.output files in the appropriate imperas-riscv-tests/riscv-test-suite/rv32i or 
rv64i directories.  Study the script to understand how it works and how you would 
modify it to add other instructions and corners. 
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Run the script and look at the files it produces.  Edit the Makefrag file in the rv32i and 
rv64i directories to add these files (WALLY-ADD and WALLY-SUB) to the set being 
tested.  Run make to build the new tests, and check that the .reference.output matches 
simulation (make should print PASS for each test). 
 
If tests don’t pass, look in work/rv32i or 64i for WALLY-ADD.diff that shows the 
discrepancies between the signature and reference values.  Your script probably 
generated incorrect expectations.  You can then look at the .S file to find the 
corresponding bad test case. 
 
Add the WALLY-ADD and WALLY-SUB test cases to the SystemVerilog testbench. Take 
care to check the address where the results begin (look at the begin_signature address 
in the .objdump). Simulate with Modelsim and confirm they all work. 
 
Your new Test Cases 
 
Sign up on the Lab 1 Test Vector spreadsheet for which group of instructions you want 
to test (and based on the unit you are on).  It’s ok to for a few people to do this as pair 
programming, so long as every group gets covered.  The instructions high on the list are 
most like the ADD example and are best if you’re not too experienced writing scripts, 
though some will involve some fun bit manipulations in Python to produce the expected 
results.  The instructions lower on the list will require more original coding and are best 
if you’re experienced with software. 
 
If you are interested in building the M (multiply/divide) hardware, pick these instructions; 
they aren’t yet implemented, so you’ll only be able to test that they run on 
riscvOVPsimPlus, not on the actual hardware yet.  Later in the project, you’ll use your 
vectors. 
 
If you are interested in the hardware/software interface, consider signing up for the CSR 
instructions and taking ownership of a comprehensive privileged test suite this 
semester.   
 
Edit Section 7.1.1 of the Wally Architecture Specification and write your test plan in the 
appropriate subsection.  Think first about what you think should be included and write 
that down.  Then browse through the Imperas test cases for your group of instructions 
and make sure your cases are more comprehensive and haven’t overlooked anything 
they are testing. Aim for hundreds of test cases unless you have a compelling reason 
for more (e.g. floating point, or eventually the full privileged system). 
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Write your test vector generator.  Place it in the wally-pipelined/testgen directory.  It 
should put tests and expected values in the imperas-riscv-tests/riscv-test-suite/rv32i and 
rv64i.  Modify the Makefrag scripts to include your tests.  Run make and fix any 
problems.  Besure the Check says OK, not IGNORE, and that there are no errors 
reported and that the log files in the work directory look clean. 
 
Unless you are doing the M instructions, add your instructions to the SystemVerilog 
testbench.  Remember to check where begin_signature is located in your objdump file; 
it is typically 0x3000 or 0x4000 past the start of the program depending on the length of 
the code, and needs to be manually entered in the testbench. Run with ModelSim and 
confirm that the processor still works. Fix the bugs in your test vectors.  Extra credit if 
you can find a failure in the Verilog! 
 
Check in your test vector generator, new tests and expected values, Makefrag, and the 
updated testbench.sv to the main branch of the git repository.  Remember to do a git 
pull on the repository first to make sure it is up to date and minimize conflicts, especially 
on testbench.sv and Makefrag because everyone will be changing it.  Check that it 
looks good (around the list of new test vectors) and still runs after you’ve checked it in. 
 
What to Turn In 
 
[4] What were the third and fourth bugs in the lab1buggy branch?   
 
[2] Edit the appropriate section of 7.1.1 of the Architecture Specification with your test 
plan.  Extra credit for hard test plans that show deep thought. 
 
[2] Did all of your tests pass “OK” when you run Make? Paste in the appropriate part of 
the transcript as proof. 
 
[2] Did all of your tests run successfully in ModelSim? Paste in the appropriate part of 
the transcript as proof. 
 
[Extra Credit] Were you able to detect and fix any bugs with your test vectors? 
 
[1] How much time did you spend on this lab?   The amount will not count toward your 
grade, but you will get a point for reporting it. 
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