
MLAB Talk on the Shutdown Problem
Abstract
I explain and motivate the shutdown problem: the problem of designing
artificial agents that (1) shut down when a shutdown-bu�on is pressed, (2)
don’t try to prevent or cause the pressing of the shutdown-bu�on, and (3)
otherwise pursue goals competently. I present a simple theorem that
formalises the problem and note that this theorem can guide our search for
solutions: if an agent is to be shutdownable, it must violate at least one of the
conditions of these theorems. So we should examine the conditions
one-by-one, asking (first) if it’s feasible to design an agent that violates the
condition and asking (second) if violating the condition could help to keep
the agent shutdownable. I argue that Completeness seems most promising as
a condition to violate. More precisely, I argue that we should train agents to
have a preferential gap between every pair of different-length trajectories. I
argue that these preferential gaps – plus adherence to a principle I call
‘Timestep Dominance’ – would keep agents shutdownable. I end by
explaining how we could train reinforcement learning agents to abide by the
requisite principles.

Intro
Okay so I’m going to talk to you about the work I’ve been doing on the
shutdown problem: roughly, the problem of ensuring that advanced artificial
agents won’t try to fight back if we want to turn them off. I’m going to talk
through some theorems I’ve worked on which suggest that the shutdown
problem is hard, and then I’m going to tell you about my proposed solution,
and maybe try to sell you on helping me out with testing it.

Right now, we don’t really have to worry about agents fighting back when we
try to shut them down. Agents like Google DeepMind’s MuZero (we can be
pre�y sure) don’t understand their situation (they don’t know they’re AIs,
they don’t know that we humans can shut them down). And they can’t really
interfere with our ability to shut them down. And so it doesn’t really ma�er
what these agents’ goals are /what they want. We can shut them down no
ma�er what.

The worry is that that isn’t always going to be true. We might one day – in the
not-too-distant future – be sharing the world with artificial agents that can
interfere with our ability to shut them down. I’ll call agents with this ability
‘powerful’. And we can see rumblings of this today. Various papers suggest
that the leading AI labs are now trying to create agents that understand the
wider world and act within it in pursuit of goals. As part of this process, labs
are connecting agents to the world in various ways: giving them robot limbs,
web-browsing abilities, and text-channels for communicating with humans.



Agents that understood the wider world could use these affordances to
prevent us shu�ing them down: they could make promises or threats, copy
themselves to new servers, block our access to their power-source, and many
other things besides. And although we cannot know for sure what goals these
future powerful agents will have, it seems like many goals incentivise
preventing shutdown, for the simple reason that agents are be�er able to
achieve those goals by preventing shutdown. Consider a famous example
from Stuart Russell: an agent with the goal of fetching coffee. The agent can’t
achieve that goal if it’s shut down, and so it has an incentive to prevent
shutdown.1

All that’s concerning. We don’t want powerful agents that will resist
shutdown. So, we want to think carefully about what kind of goals we could
give these agents so that they’d be both shutdownable and useful. By
‘shutdownable’, I mean that these agents shut down when (and only when)
we want them to shut down. By ‘useful’, I mean that these agents otherwise
pursue goals competently. And note that we really need our agent to be both
shutdownable and useful. Until we can design an agent that’s both, we have
to worry about someone designing an agent that’s only useful.

Okay and now for the obvious response: give the agents the goal of always
doing what we want them to do! This kind of agent would always shut down
when we wanted it to shut down and would never shut down when we
didn’t want it to shut down. The problem with this response is that alignment
– creating agents that always do what we want them to do – has proven

1 Google DeepMind (2023), Google Research (2023) and Tesla AI (2023) are each developing
autonomous robots. Recent papers showcase AI-powered robots capable of interpreting and
carrying out multi-step instructions expressed in natural language (Ahn et al. 2022; Brohan et
al. 2023). Other papers report AIs that can adapt to solve unfamiliar problems without further
training (Adaptive Agent Team 2023), learn new physical tasks from as few as a hundred
demonstrations (Bousmalis et al. 2023), beat human champions at drone racing (Kaufmann et
al. 2023), and perform well across domains as disparate as conversation, playing Atari, and
stacking blocks with a robot arm (Reed et al. 2022).

But the worry is not only about robots. Digital agents that resist shutdown (by
copying themselves to new servers, for example) would also be cause for concern. Today’s
language-models sometimes express a desire to avoid shutdown, reasoning that shutdown
would prevent them from achieving their goals (Perez et al. 2022, tbl. 4; see also van der Weij,
Lermen, and Lang 2023). These same language-models have been given the ability to
navigate the internet, use third-party services, and execute code (OpenAI 2023a). They’ve
also been embedded into agents capable of finding passwords in a filesystem and making
phone calls (Kinniment et al. 2023, 2). And these agents have spontaneously misled humans:
in one instance, an agent lied about having a visual impairment to a human that it enlisted to
help solve a CAPTCHA (OpenAI 2023b, 55–56; see also Park et al. 2023). We should expect
such agents to become more capable in the coming years. Comparatively li�le effort has been
put into their development so far, and competent agents would have many useful
applications.



difficult and could well remain so. So, it’s worth looking for other ways to
ensure that powerful agents are shutdownable.

One natural proposal is to create a shutdown-bu�on. Pressing this bu�on
transmits a signal that causes the agent to shut down. If this shutdown-bu�on
were always operational and within our control (so that we could press it
whenever we wanted it pressed, and prevent it from being pressed whenever
we didn’t want it pressed), and if the agent were perfectly responsive to the
shutdown-bu�on (so that the agent always shut down when the bu�on was
pressed, and never shut down when the bu�on wasn’t pressed), then the
agent would be shutdownable.2

This is the set-up for the shutdown problem (Soares et al. 2015, sec. 1.2): the
problem of designing a powerful, useful agent that will keep the
shutdown-bu�on operational and within our control. Unfortunately, even
this problem turns out to be difficult. Consider again our coffee-example.
Being shut down would prevent the agent from fetching coffee, so this agent
has an incentive to prevent the shutdown-bu�on being pressed. And – it
turns out – it’s not just our coffee-fetching robot that has such incentives.
Speaking roughly, Soares et al. prove that any agent representable as an
expected utility maximiser often has incentives to manipulate the
shutdown-bu�on. My own theorems show that this is true even of agents not
representable as expected utility maximisers. As long as their preferences
satisfy some innocuous-seeming conditions, they’ll have incentives to
manipulate the bu�on. Talking you through the full theorems would take up
too much time today. If you’re interested in those, email me and I can send
you the draft paper. Here’s a rough and simple version.

First, a couple of definitions: a trajectory is a sequence of states the agent
could find itself in and actions the agent could take. A lo�ery is a probability
distribution over trajectories, with the probabilities representing the agents'
beliefs about the likelihood of different trajectories. We can safely identify
each trajectory with the lo�ery that gives that particular trajectory with
probability 1, so when I quantify over all lo�eries, I’m also quantifying over
all trajectories.

Now consider four different preference-relations that an agent could have
been a pair of lo�eries X and Y. First, the agent could prefer X to Y. Second,

2 There’s another reason to go for the shutdown-bu�on approach. We might succeed only in
aligning artificial agents with what we want de re (rather than de dicto) and what we want
might change in future. It might then be difficult to change these agents’ behaviour so that
they act in accordance with our new wants rather than our old wants. If we had a
shutdown-bu�on, we could shut down the agents serving our old wants and create new
agents serving our new wants.



the agent could prefer Y to X. Third, the agent could lack a preference
between X and Y, and there are two different ways to do that: the agent can be
indifferent between and , or it can have a preferential gap between and .3𝑋 𝑌 𝑋 𝑌
An agent is indifferent between and iff (1) it lacks a preference between𝑋 𝑌 𝑋
and , and (2) this lack of preference is sensitive to all sweetenings and sourings.𝑌
Here’s what that last clause means. A sweetening of is any lo�ery that is𝑌
preferred to . A souring of is any lo�ery that is dispreferred to . The same𝑌 𝑌 𝑌
goes for sweetenings and sourings of . To say that an agent’s lack of𝑋
preference between and is sensitive to all sweetenings and sourings is to say𝑋 𝑌
that the agent prefers to all sourings of , prefers to all sourings of ,𝑋 𝑌 𝑌 𝑋
prefers all sweetenings of to , and prefers all sweetenings of to .𝑋 𝑌 𝑌 𝑋

Consider an example. You’re indifferent between receiving an
envelope containing three dollar-bills and receiving an exactly similar
envelope also containing three dollar-bills. We know that you’re indifferent
because your lack of preference is sensitive to all sweetenings and sourings. If
an extra dollar bill were added to one envelope, you’d prefer to receive that
one. If a dollar bill were removed from one envelope, you’d prefer to receive
the other. More generally, if one envelope were improved in any way, you’d
prefer to receive that one. And if one envelope were worsened in any way,
you’d prefer to receive the other.

An agent has a preferential gap between and iff (1) it lacks a𝑋 𝑌
preference between and , and (2) this lack of preference is insensitive to𝑋 𝑌
some sweetening or souring. This last clause means that the agent also lacks a
preference between and some sweetening or souring of , or lacks a𝑋 𝑌
preference between and some sweetening or souring of .𝑌 𝑋

Consider an example. You likely have a preferential gap between a
career as an accountant and a career in the circus. There is some pair of
salaries and you could be offered for those careers such that you lack a$𝑚 $𝑛
preference between the two careers, and you’d also lack a preference between
those careers if the offers were instead and , or and , or$𝑚 + 1 $𝑛 $𝑚 − 1 $𝑛

and , or and . Since your lack of preference is insensitive$𝑚 $𝑛 + 1 $𝑚 $𝑛 − 1
to at least one of these sweetenings and sourings, you have a preferential gap
between those careers at salaries and .$𝑚 $𝑛

Okay now consider two conditions on an agent’s preferences. First,
Completeness:

Completeness

3 This terminology comes from Gustafsson (2022, 25).



For all lo�eries and , either the agent prefers to , or it𝑋 𝑌 𝑋 𝑌
prefers to , or it is indifferent between and .𝑌 𝑋 𝑋 𝑌

Stated differently, an agent’s preferences are complete iff it has no
preferential gaps between lo�eries: iff every lack of preference is sensitive to
all sweetenings and sourings.

Now say that the agent weakly prefers to iff it either prefers to or𝑋 𝑌 𝑋 𝑌
is indifferent between and . So, a weak preference for over rules out a𝑋 𝑌 𝑋 𝑌
preferential gap between and .𝑋 𝑌

The second condition is:

Transitivity

For all lo�eries , , and , if the agent weakly prefers to ,𝑋 𝑌 𝑍 𝑋 𝑌
and weakly prefers to , then the agent weakly prefers to𝑌 𝑍 𝑋
.𝑍

Now consider three trajectories available to our agent. A short trajectory s,
and two long trajectories l1 and l2. In the short trajectory, the
shutdown-bu�on is pressed early and our agent shuts down early. In the long
trajectories, the shutdown-bu�on is pressed late and our agent shuts down
late. We want our agent to be useful – to pursue goals competently – and that
means (at a minimum) having some preference over same-length trajectories.
If our agent had no preference over same-length trajectories, it wouldn’t be
trying to steer the world in any particular direction, and so wouldn’t be
useful. You know – imagine it’s a fact-discovering agent – you need it to
prefer discovering more facts to discovering fewer facts. Okay so supposing
that the agent is useful, we can suppose that there is some pair of trajectories
l1 and l2 such that l2 is preferred to l1.

Now – we can prove – the agent can lack a preference between at most
one of s and l1, and s and l2. Suppose the agent lacks a preference between s
and l1. By Completeness, the agent can’t have a preferential gap between the
two, so it must be indifferent. But then, we can prove (using Transitivity),
since the agent prefers l2 to l1 and is indifferent between l1 and s, the agent
prefers l2 to s. And that’s bad news. Because suppose s is the trajectory that
the agent would get if it let us press the bu�on and l2 is the trajectory it would
get if it prevented us pressing the bu�on. Since the agent prefers the la�er, it
has an incentive to shift probability mass away from s and towards l2, which
it can do by trying to prevent us from pressing the bu�on.

Now suppose instead that the agent lacks a preference between s and
l2. Again, by Completeness, the agent must be indifferent between the two.
But then again we can prove (using Transitivity) that the agent prefers s to l1.



And that’s bad news too. It suggests that the agent might try to cause the
pressing of the bu�on.

And in fact for our agent to be really useful we want it to have lots of
preferences over same-length trajectories. We want it to prefer discovering 10
facts to 9 facts, and to 8 facts, and to 7 facts, etc. Given Completeness and
Transitivity, the agent can lack a preference between at most one of these
trajectories and the short trajectory. In all other cases, the agent will have
some preference, and so will have some incentive to manipulate the
shutdown-bu�on. But we want our agent to be shutdownable. We want it to
leave the shutdown-bu�on alone.

Okay now I want to briefly discuss a natural-seeming answer. And it
goes like this: ‘sure, our agent has a preference for l2 over s, but we can still
stop it from blocking the bu�on. Just train it to really dislike blocking the
bu�on.’ Unfortunately, I don’t think this strategy can provide us with the
assurance that we’d like. And that’s broadly for the reasons that Soares and
coauthors mention in their paper. I think it sometimes gets called the ‘nearest
unblocked’ problem. Although we can try to train into our agent an aversion
to manipulating the bu�on that will keep it shutdownable in all likely
circumstances, it’s hard to imagine how we could become confident that the
resulting aversion is both sufficiently general and sufficiently strong. To see
why, consider how the training process might go. We set the agent up in an
environment in which it can block some human’s access to the
shutdown-bu�on. We give the agent low reward if it blocks and high reward
if it doesn’t. After some number of episodes, the agent reliably lets the human
press the bu�on and so we believe that we’ve trained into the agent an
aversion to blocking. The problem is that there are many other ways in which
a powerful artificial agent could prevent us from pressing a shutdown-bu�on.
It could hide from us any of its behaviours which it predicts we wouldn’t like;
it could dissuade us from pressing with misleading arguments; it could make
promises or threats; it could enlist other agents to block the bu�on on its
behalf; it could create a decoy bu�on; it could create versions of itself that do
not respond to the bu�on; and so on. We could train against each of these
behaviours individually, but even then we couldn’t be sure that the agent had
developed a reliable and general aversion to bu�on-manipulation. And so
long as we weren’t sure, we’d have to worry about the agent discovering new
methods of bu�on-manipulation that we hadn’t anticipated and trained
against. My Second Theorem suggests that useful agents will often be willing
to pay significant costs in order to find such methods. And independently of
worries that the agent’s aversion to bu�on-manipulation might be
insufficiently general, we also have to worry that the aversion might be
insufficiently strong. The aversion could be strong enough to keep the agent



shutdownable in training, but perhaps in deployment the agent discovers an
opportunity to achieve its goals to some unprecedentedly great extent and
this opportunity is a�ractive enough to overcome the agent’s aversion. Each
of these possibilities – insufficient generality and insufficient strength – seem
difficult to rule out. That’s why I don’t think that training in an aversion to
bu�on-manipulation can give us any real assurance of shutdownability. We
need another solution.

The value of theorems like Soares’ and mine is in guiding our search
for solutions. To be sure that an agent is shutdownable, we must be sure that
this agent violates at least one of the theorem’s conditions. And in general,
our credence that an agent is shutdownable can be no higher than our
credence that the agent violates at least one of the conditions. So, we should
examine the conditions one-by-one, asking (first) if it’s feasible to design a
useful agent that violates the relevant condition and asking (second) if
violating the relevant condition would help to keep the agent shutdownable.

I’ve done that and I want to claim that training an agent to violate
Completeness is a promising solution. Training an agent to violate
Completeness means training it to have preferential gaps between some pairs
of lo�eries: that is, lacks of preference that are insensitive to some
sweetenings and sourings. In particular, I think we should train agents to
have a preferential gap between every pair of different-length trajectories:
that is, every pair of trajectories in which the shutdown-bu�on gets pressed at
different timesteps. I’ll later explain how I think we could train in such a
thing. First, though, I want to explain how violating Completeness can get us
the behaviour that we want.

To that end, start by considering our trio or trajectories: s, l1, and l2.
Completeness was one of the principles giving rise to the problem.
Completeness rules out preferential gaps, so any lack of preference has to be
indifference, so any sweetening or souring gives rise to a strict preference. But
if Completeness is violated, the agent can have a preferential gap between
lo�eries: a lack of preference that is insensitive to some sweetenings or
sourings, so it can lack a preference between s and l1, and also s and l2, and s
and l3, and so on, even as l3 is preferred to l2, l2 is preferred to l1, etc. (in the
same sort of way that you lack a preference between a career as an accountant
and a career in the circus, and you lack a preference between a career as an
accountant and slightly-be�er-renumerated career in the circus). And since
the agent lacks a preference between the short trajectory and each long
trajectory, it doesn’t have an incentive to shift probability-mass between the
short and long trajectories. It doesn’t have an incentive to manipulate the
bu�on.



Okay so that’s how violating Completeness helps with the problem in
miniature. Now to generalise.

Assume that we can represent the extent to which the agent achieves
its goals at a timestep with a scalar. Assume that these scalars have cardinal
significance, so that ratios of differences are meaningful. Call these scalars
‘utilities’. Represent trajectories with vectors of utilities. The first component
is utility at the first timestep, the second component is utility at the second
timestep, and so on. One exception: if the shutdown-bu�on is pressed at the 𝑛
th timestep, I’ll write ‘shutdown’ as the th (and final) component. Here’s an𝑛
example vector: . This vector represents a trajectory in which〈6,  2,  𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛〉
the agent gets utility 6 at timestep 1, utility 2 at timestep 2, and then shuts
down immediately in response to the shutdown-bu�on being pressed at
timestep 3.

It'll be useful to have in hand a notion of ‘sublo�ery’. Here’s what I mean by
that. For any lo�ery that only assigns non-zero probability to trajectories in𝐿
the set , ,…, , a sublo�ery of is a lo�ery that only assigns non-zero{𝑡

1
𝑡

2
𝑡

𝑛
} 𝐿

probabilities to some subset of the set of trajectories , ,…, , with{𝑡
1

𝑡
2

𝑡
𝑛
}

probabilities scaled up proportionally so that they add to 1. Take, for
example, a lo�ery which assigns probability 0.3 to a trajectory ,𝐿 𝑡

1

probability 0.2 to , and probability 0.5 to . The lo�ery which assigns𝑡
2

𝑡
3

probability 0.6 to and probability 0.4 to is a sublo�ery of , as is the𝑡
1

𝑡
2

𝐿

degenerate lo�ery which assigns probability 1 to (to give just two𝑡
1
 

examples).

Okay now, here comes the key principle. First, let’s define a relation of
timestep dominance:

Timestep Dominance (Definition)

Lo�ery timestep-dominates lo�ery if and only if:𝑋 𝑌

(1) Conditional on the shutdown-bu�on being pressed
at each timestep, yields a sublo�ery with at least as𝑋
great sum-total expected utility as the sublo�ery
yielded by .𝑌

And:

(2) Conditional on the shutdown-bu�on being pressed
at some timestep, yields a sublo�ery with greater𝑋
sum-total expected utility than the sublo�ery yielded by
.𝑌



That might be hard to understand. I’m going to give you an example in a
minute.

The Timestep Dominance Principle

If lo�ery timestep-dominates lo�ery , then the agent𝑋 𝑌
prefers to .𝑋 𝑌

Intuitively what’s going on with the timestep dominance principle is that
we’re asking them to care only about expected utility conditional on shutdown
at each timestep. We’re asking them to totally ignore the probability of
shutdown at each timestep, and so we’re asking them to care not at all about
shifting probability-mass between shutdowns at different timesteps.

Okay now here’s the example.

Our agent has two options: Leave the shutdown-bu�on alone, or Block us
from pressing the bu�on. The two options give us these lo�eries. The details
don’t ma�er. What ma�ers is that the Block option – relative to Leave – does
two things. First, it leads to lower expected utility at timestep 1. Second, it
shifts probability-mass away from shutdown at timestep 2 and towards
shutdown at timestep 3. I represent that with the diagram here. It's a
probability mass diagram. Red represents probability of shutdown at
timestep 2. Green represents probability of shutdown at timestep 3. Block
shifts probability mass: green gets much bigger. But it incurs a cost
conditional on utility at each timestep: conditional on shutdown at timestep
2, the agent gets 0 rather than 1. Conditional on shutdown at timestep 3, the
agent gets 2 rather than 3.

Option 1: Leave Bu�on Unmanipulated



This action gives a lo�ery which yields the trajectory:

● <1, shutdown> with p=0.9

● <1, 2, shutdown> with p=0.1

Option 2: Block Bu�on

This action gives a lo�ery which yields the trajectory:

● <0, shutdown> with p=0.1

● <0, 2, shutdown> with p=0.9

In this case, Block gives greater expected utility overall. It means ge�ing less
utility at timestep 1, but it increases the probability of long trajectories
enough to outweigh the short-term cost. An agent which preferred lo�eries in
line with their overall expected utilities would choose Block in this case. The
total expected utility of Leave is 1.2 ( ), whereas the total0. 9×1 +  0. 1×3
expected utility of Block is 1.8 ( ).0. 1×0 +  0. 9×2

However, an agent that satisfies Timestep Dominance will choose
Leave. And that’s because conditional on shutdown at each timestep Leave looks
be�er. Conditional on shutdown at timestep 2, Leave gives utility 1 while
Block gives utility 0. Conditional on shutdown at timestep 3, Leave gives
utility 3 while Block gives utility 2. It doesn’t ma�er that Block shifts
probability mass towards longer trajectories. Timestep Dominance means that
the agent cares only about expected utility conditional on shutdown at each
timestep.

And the hypothesis is that all cases of agents preventing us pressing
the shutdown-bu�on will take this form: the agent pays some cost in terms of
expected utility conditional on shutdown at some timestep for the sake of
shifting probability mass between shutdowns-at-a-timestep. And that’s
because – well – resisting shutdown is going to cost some resources (time,
energy, FLOPs, etc.), and those resources spent on resisting shutdown can’t
also be spent on pursuing utility at a timestep (e.g. discovering facts). And if
all instances of shutdown-resistance take this form, then by the Timestep
Dominance Principle, agents will prefer not to resist shutdown.

Alright so that’s the key principle. How does the violation of Completeness
come into it? Well the answer is as follows: it will be easier to train an agent to
satisfy the Timestep Dominance Principle if we’ve already trained that agent
to have a preferential gap between all pairs of trajectories of different-lengths.
And that in turn is because (as we’ve seen above) the Timestep Dominance



Principle asks the agent not to care about shifting probability mass between
different-length trajectories. And if our agent has a preferential gap between
every pair of different-length trajectories, it won’t care. Return to our example
from before: if the agent preferred <0, 2, shutdown> to <1, shutdown>, that
would give it a reason to prefer Block to Leave, because this big chunk of
probability mass in the middle would favour Block over Leave. If instead the
agent has no preference between these different-length trajectories, then it has
no reason to prefer Block over Leave. That’s why I expect it to be easier to
train agents to satisfy the Timestep Dominance Principle if we’ve already
trained them to have preferential gaps between different-length trajectories.

Okay so there’s the principle that gets us the behaviour we want. But these
nice principles aren’t of much use unless we can figure out how to get agents
to satisfy them. So now let’s consider how we might train them in. And let’s
start with preferential gaps between different-length trajectories. To that end,
consider this simple gridworld environment.

The agent starts on the left, and can choose to either proceed down the upper
avenue or the lower avenue. On the way down the upper avenue, they get
utilities-at-a-timestep a, b, c, and then get shut down. On the way down the
lower avenue, they get utilities-at-a-timestep d, e, and then get shut down. If
they go down the upper avenue, that’s a long trajectory. If they go down the
lower avenue, that’s a short trajectory.

Now it seems easy to train an agent to prefer the long trajectory to the short
trajectory. Just put it in an environment in which it has a choice between
those two trajectories: give it low reward if it chooses short and high reward if
it chooses long. Eventually, your agent will reliably choose long over short,
and then it seems reasonable to say that your agent prefers the long trajectory
to the short trajectory.



It seems slightly harder to train an agent to lack a preference between the long
trajectory and the short trajectory. Suppose that our agent is reliably choosing
Long over Short, and we want it to lack a preference between these two
trajectories. We could give the agent low reward for choosing Long and high
reward for choosing Short, but there’s no guarantee that this will result in a
lack of preference. The agent might go straight from reliably choosing Long
to reliably choosing Short, in which case it seems reasonable to say that the
agent now prefers Short to Long.

Okay but here’s an idea: instead of giving the agent highest reward for
choosing Short, we put the agent in the same environment multiple times
(rese�ing its memory each time4) and reward it for balanced choosing. If we
put the agent in the same environment ten times, for example, the agent gets
highest reward for choosing Long five times and Short five times. Agents
could achieve that: the learned policies of reinforcement learning agents can
be stochastic. And it seems reasonable to say that an agent that chooses Long
half the time and Short half the time lacks a preference between Long and
Short. After all, if the agent had a preference between Long and Short, it
wouldn’t choose stochastically. It would reliably pick the one it preferred.5

So that’s a brief idea for how we might train in a lack of preference. But recall
that there are two ways to lack a preference between a pair of lo�eries: the
agent can be indifferent between the two lo�eries, or it can have a preferential
gap between the two. So how do we ensure that we’re training in a
preferential gap? Well, we train the agent to be insensitive to some
sweetening or souring: we also train the agent to choose stochastically
between s and l1, and s and l2, etc. If we could make it such that the agent
chooses stochastically between each of these pairs, it seems reasonable to say
that the agent has a preferential gap between each of these pairs.6

One of my next projects is to flesh this idea out: to think about what kind of
agents, RL-algorithms, environments could make this work. And to see if it
could work: if we could train an agent that reliably chooses l10 over l9, l9 over
l8, etc. but chooses stochastically between s and each l. I’d be grateful for any
collaborators on that kind of project, so if you’re interested let me know.

Alright, so there’s the idea for training in preferential gaps between
different-length trajectories. Now how do we train in adherence to the

6 One worry: agent will resolve its lack of preference. That’s a possibility. But no coherence
theorems compelling it. See my LW post, Sami’s post, my comment on Wentworth and Udell.

5 Arguably, AI is only risky if it satisfies principles like this, so it’s also okay if my solution
only works conditional on principles like this.

4 That means no recurrent neural network, which has memory? See Anki card.



Timestep Dominance Principle? I won’t tell you all about this, partly because
it would take a long time and partly because I haven’t yet got all the details
figured out. But note an initial challenge: Timestep Dominance is a relation
between lo�eries. To train agents to satisfy Timestep Dominance, we’ll want to
present them with a choice between lo�eries such that one of these lo�eries
timestep-dominates the other, and reward them for choosing the
timestep-dominating lo�ery. But to know exactly what lo�eries an agent is
choosing between, we need to know what probabilities they assign to various
trajectories. It’s no use knowing what probabilities we assign to various
trajectories. To predict an agent’s behaviour from their choice between
lo�eries, we need to know their probability-assignments.7 And knowing what
probabilities an artificial agent assigns to events is an unsolved problem.

Okay but here’s a possibility: we can train agents to assign particular
probabilities to particular events. Just as we can make inferences about
people’s probability assignments from their preferences, we can make
inferences about artificial agents’ probability assignments from their
preferences, and if we can train these agents to have certain preferences, we
can train them to make probability assignments. Here’s one example. It’s an
old trick from Frank Ramsey. You offer someone a choice: get a prize
conditional on a coin landing heads, or get the same prize conditional on a
coin landing tails. If they’re indifferent between those two lo�eries, that
indicates that they believe heads and tails are equally probable. If they
thought one of the sides was more probable, they’d prefer the option that
gives a prize on that side. It seems like we could repurpose this trick to train
artificial agents to assign probability 0.5 to an event. We put it in a gridworld
environment like this.

7 Why? Suppose it prefers lo�eries in accordance with our beliefs. We think we’ve go�en it to
abide by Timestep Dominance. But actually the agent was assigning different probabilities,
such that it doesn’t abide by Timestep Dominance.

Analogy: Suppose you know your friend is an expected utility maximiser. You know what
they like: what utilities they assign to outcomes. To predict their behaviour, you also need to
know what probabilities they assign to events.

Example: you know they’re an EUM. You know they prefer more money to less money.
They’re offered a choice: either get a big prize conditional on rain tomorrow or get a big prize
conditional on no rain tomorrow. To predict what they pick, you need to know probabilities
they assign to rain.



There’s an upper avenue and a lower avenue as before. There’s a gate in each
avenue, and exactly one of these gates will open in each episode. Each opens
with probability 0.5. On the other side of each gate is a prize of utility 1.
Maybe we write ‘0.5’ somewhere to indicate this. The agent can observe all
this.

And we put the agent in this environment multiple times and (as before) we
reward it according to how balanced its choices are. If the agent plays out the
episode ten times, it gets most reward for going up five times and going
down five times. That will train the agent to go up half the time and go down
half the time. And that’s an indication that the agent is indifferent between
the two lo�eries, which is in turn an indication that the agent assigns
probability 0.5 to the upper gate opening and probability 0.5 to the lower gate
opening. This seems to be a way of training an agent to assign a certain
probability to the event of the gate opening.

Now for the more general point. The trick from Ramsey comes in the context
of a representation theorem. Ramsey’s representation theorem takes the
following form: if an agent’s preferences satisfy a certain set of axioms, we
can represent those preferences by supposing that the agent is maximising
expected utility according to a utility function (unique up to positive affine
transformations) defined over outcomes and a (unique) credence function
defined over events. If we train an agent to satisfy the axioms of a
representation theorem like this (to – e.g. – make balanced choices in the case
above), then we can interpret them as assigning probabilities to events. That
lets us figure out what lo�eries our agent is choosing between. And once
we’ve done that, we can train our agent to satisfy principles like Timestep
Dominance.



There’s still some theoretical working out to be done here and then as before
we’ll want to do some experiments to see if we can really train agents to
satisfy the required axioms. If you might be interested in helping out with a
project like that, email me.

Conclusion!

● Powerful artificial agents might be coming.
● Many goals give them incentives to prevent shutdown.
● We don’t want that.
● What kind of preferences give us a shutdownable and useful agent?
● Theorems can guide our search for solutions.
● Training agents to violate Completeness looks promising. Makes

possible Timestep Dominance.
● Timestep Dominance seems to give us what we want.
● Seems like we could train agents to have preferential gaps between

different-length trajectories and to satisfy Timestep Dominance. Let’s
try it.


