
MLAB Talk on the Shutdown Problem 

Abstract 
I explain and motivate the shutdown problem: the problem of designing 
artificial agents that (1) shut down when a shutdown-button is pressed, (2) 
don’t try to prevent or cause the pressing of the shutdown-button, and (3) 
otherwise pursue goals competently. I present a simple theorem that 
formalises the problem and note that this theorem can guide our search for 
solutions: if an agent is to be shutdownable, it must violate at least one of the 
conditions of these theorems. So we should examine the conditions 
one-by-one, asking (first) if it’s feasible to design an agent that violates the 
condition and asking (second) if violating the condition could help to keep 
the agent shutdownable. I argue that Completeness seems most promising as 
a condition to violate. More precisely, I argue that we should train agents to 
have a preferential gap between every pair of different-length trajectories. I 
argue that these preferential gaps – plus adherence to a principle I call 
‘Timestep Dominance’ – would keep agents shutdownable. I end by 
explaining how we could train reinforcement learning agents to abide by the 
requisite principles. 
 
Intro 
Okay so I’m going to talk to you about the work I’ve been doing on the 
shutdown problem: roughly, the problem of ensuring that advanced artificial 
agents won’t try to fight back if we want to turn them off. I’m going to talk 
through some theorems I’ve worked on which suggest that the shutdown 
problem is hard, and then I’m going to tell you about my proposed solution, 
and maybe try to sell you on helping me out with testing it. 
 
Right now, we don’t really have to worry about agents fighting back when we 
try to shut them down. Agents like Google DeepMind’s MuZero (we can be 
pretty sure) don’t understand their situation (they don’t know they’re AIs, 
they don’t know that we humans can shut them down). And they can’t really 
interfere with our ability to shut them down. And so it doesn’t really matter 
what these agents’ goals are /what they want. We can shut them down no 
matter what. 
 
The worry is that that isn’t always going to be true. We might one day – in the 
not-too-distant future – be sharing the world with artificial agents that can 
interfere with our ability to shut them down. I’ll call agents with this ability 
‘powerful’. And we can see rumblings of this today. Various papers suggest 
that the leading AI labs are now trying to create agents that understand the 
wider world and act within it in pursuit of goals. As part of this process, labs 
are connecting agents to the world in various ways: giving them robot limbs, 
web-browsing abilities, and text-channels for communicating with humans. 



Agents that understood the wider world could use these affordances to 
prevent us shutting them down: they could make promises or threats, copy 
themselves to new servers, block our access to their power-source, and many 
other things besides. And although we cannot know for sure what goals these 
future powerful agents will have, it seems like many goals incentivise 
preventing shutdown, for the simple reason that agents are better able to 
achieve those goals by preventing shutdown. Consider a famous example 
from Stuart Russell: an agent with the goal of fetching coffee. The agent can’t 
achieve that goal if it’s shut down, and so it has an incentive to prevent 
shutdown.1 
 
All that’s concerning. We don’t want powerful agents that will resist 
shutdown. So, we want to think carefully about what kind of goals we could 
give these agents so that they’d be both shutdownable and useful. By 
‘shutdownable’, I mean that these agents shut down when (and only when) 
we want them to shut down. By ‘useful’, I mean that these agents otherwise 
pursue goals competently. And note that we really need our agent to be both 
shutdownable and useful. Until we can design an agent that’s both, we have 
to worry about someone designing an agent that’s only useful.  
 
Okay and now for the obvious response: give the agents the goal of always 
doing what we want them to do! This kind of agent would always shut down 
when we wanted it to shut down and would never shut down when we 
didn’t want it to shut down. The problem with this response is that alignment 
– creating agents that always do what we want them to do – has proven 

1 Google DeepMind (2023), Google Research (2023) and Tesla AI (2023) are each developing 
autonomous robots. Recent papers showcase AI-powered robots capable of interpreting and 
carrying out multi-step instructions expressed in natural language (Ahn et al. 2022; Brohan et 
al. 2023). Other papers report AIs that can adapt to solve unfamiliar problems without further 
training (Adaptive Agent Team 2023), learn new physical tasks from as few as a hundred 
demonstrations (Bousmalis et al. 2023), beat human champions at drone racing (Kaufmann et 
al. 2023), and perform well across domains as disparate as conversation, playing Atari, and 
stacking blocks with a robot arm (Reed et al. 2022). 

But the worry is not only about robots. Digital agents that resist shutdown (by 
copying themselves to new servers, for example) would also be cause for concern. Today’s 
language-models sometimes express a desire to avoid shutdown, reasoning that shutdown 
would prevent them from achieving their goals (Perez et al. 2022, tbl. 4; see also van der Weij, 
Lermen, and Lang 2023). These same language-models have been given the ability to 
navigate the internet, use third-party services, and execute code (OpenAI 2023a). They’ve 
also been embedded into agents capable of finding passwords in a filesystem and making 
phone calls (Kinniment et al. 2023, 2). And these agents have spontaneously misled humans: 
in one instance, an agent lied about having a visual impairment to a human that it enlisted to 
help solve a CAPTCHA (OpenAI 2023b, 55–56; see also Park et al. 2023). We should expect 
such agents to become more capable in the coming years. Comparatively little effort has been 
put into their development so far, and competent agents would have many useful 
applications. 



difficult and could well remain so. So, it’s worth looking for other ways to 
ensure that powerful agents are shutdownable. 
 
One natural proposal is to create a shutdown-button. Pressing this button 
transmits a signal that causes the agent to shut down. If this shutdown-button 
were always operational and within our control (so that we could press it 
whenever we wanted it pressed, and prevent it from being pressed whenever 
we didn’t want it pressed), and if the agent were perfectly responsive to the 
shutdown-button (so that the agent always shut down when the button was 
pressed, and never shut down when the button wasn’t pressed), then the 
agent would be shutdownable.2 
 
This is the set-up for the shutdown problem (Soares et al. 2015, sec. 1.2): the 
problem of designing a powerful, useful agent that will keep the 
shutdown-button operational and within our control. Unfortunately, even 
this problem turns out to be difficult. Consider again our coffee-example. 
Being shut down would prevent the agent from fetching coffee, so this agent 
has an incentive to prevent the shutdown-button being pressed. And – it 
turns out – it’s not just our coffee-fetching robot that has such incentives. 
Speaking roughly, Soares et al. prove that any agent representable as an 
expected utility maximiser often has incentives to manipulate the 
shutdown-button. My own theorems show that this is true even of agents not 
representable as expected utility maximisers. As long as their preferences 
satisfy some innocuous-seeming conditions, they’ll have incentives to 
manipulate the button. Talking you through the full theorems would take up 
too much time today. If you’re interested in those, email me and I can send 
you the draft paper. Here’s a rough and simple version. 
 
First, a couple of definitions: a trajectory is a sequence of states the agent 
could find itself in and actions the agent could take. A lottery is a probability 
distribution over trajectories, with the probabilities representing the agents' 
beliefs about the likelihood of different trajectories. We can safely identify 
each trajectory with the lottery that gives that particular trajectory with 
probability 1, so when I quantify over all lotteries, I’m also quantifying over 
all trajectories. 
 
Now consider four different preference-relations that an agent could have 
been a pair of lotteries X and Y. First, the agent could prefer X to Y. Second, 

2 There’s another reason to go for the shutdown-button approach. We might succeed only in 
aligning artificial agents with what we want de re (rather than de dicto) and what we want 
might change in future. It might then be difficult to change these agents’ behaviour so that 
they act in accordance with our new wants rather than our old wants. If we had a 
shutdown-button, we could shut down the agents serving our old wants and create new 
agents serving our new wants. 



the agent could prefer Y to X. Third, the agent could lack a preference 
between X and Y, and there are two different ways to do that: the agent can be 
indifferent between  and , or it can have a preferential gap between  and .3 𝑋 𝑌 𝑋 𝑌
An agent is indifferent between  and  iff (1) it lacks a preference between  𝑋 𝑌 𝑋
and , and (2) this lack of preference is sensitive to all sweetenings and sourings. 𝑌
Here’s what that last clause means. A sweetening of  is any lottery that is 𝑌
preferred to . A souring of  is any lottery that is dispreferred to . The same 𝑌 𝑌 𝑌
goes for sweetenings and sourings of . To say that an agent’s lack of 𝑋
preference between  and  is sensitive to all sweetenings and sourings is to say 𝑋 𝑌
that the agent prefers  to all sourings of , prefers  to all sourings of , 𝑋 𝑌 𝑌 𝑋
prefers all sweetenings of  to , and prefers all sweetenings of  to . 𝑋 𝑌 𝑌 𝑋
 

Consider an example. You’re indifferent between receiving an 
envelope containing three dollar-bills and receiving an exactly similar 
envelope also containing three dollar-bills. We know that you’re indifferent 
because your lack of preference is sensitive to all sweetenings and sourings. If 
an extra dollar bill were added to one envelope, you’d prefer to receive that 
one. If a dollar bill were removed from one envelope, you’d prefer to receive 
the other. More generally, if one envelope were improved in any way, you’d 
prefer to receive that one. And if one envelope were worsened in any way, 
you’d prefer to receive the other. 

 
An agent has a preferential gap between  and  iff (1) it lacks a 𝑋 𝑌

preference between  and , and (2) this lack of preference is insensitive to 𝑋 𝑌
some sweetening or souring. This last clause means that the agent also lacks a 
preference between  and some sweetening or souring of , or lacks a 𝑋 𝑌
preference between  and some sweetening or souring of . 𝑌 𝑋

 
Consider an example. You likely have a preferential gap between a 

career as an accountant and a career in the circus. There is some pair of 
salaries  and  you could be offered for those careers such that you lack a $𝑚 $𝑛
preference between the two careers, and you’d also lack a preference between 
those careers if the offers were instead  and , or  and , or $𝑚 + 1 $𝑛 $𝑚 − 1 $𝑛

 and , or  and . Since your lack of preference is insensitive $𝑚 $𝑛 + 1 $𝑚 $𝑛 − 1
to at least one of these sweetenings and sourings, you have a preferential gap 
between those careers at salaries  and . $𝑚 $𝑛

 
Okay now consider two conditions on an agent’s preferences. First, 

Completeness: 

Completeness 

3 This terminology comes from Gustafsson (2022, 25). 



For all lotteries  and , either the agent prefers  to , or it 𝑋 𝑌 𝑋 𝑌
prefers  to , or it is indifferent between  and . 𝑌 𝑋 𝑋 𝑌

Stated differently, an agent’s preferences are complete iff it has no 
preferential gaps between lotteries: iff every lack of preference is sensitive to 
all sweetenings and sourings. 
 

Now say that the agent weakly prefers  to  iff it either prefers  to  or 𝑋 𝑌 𝑋 𝑌
is indifferent between  and . So, a weak preference for  over  rules out a 𝑋 𝑌 𝑋 𝑌
preferential gap between  and . 𝑋 𝑌

 
The second condition is: 

Transitivity 

For all lotteries , , and , if the agent weakly prefers  to , 𝑋 𝑌 𝑍 𝑋 𝑌
and weakly prefers  to , then the agent weakly prefers  to 𝑌 𝑍 𝑋

. 𝑍

Now consider three trajectories available to our agent. A short trajectory s, 
and two long trajectories l1 and l2. In the short trajectory, the 
shutdown-button is pressed early and our agent shuts down early. In the long 
trajectories, the shutdown-button is pressed late and our agent shuts down 
late. We want our agent to be useful – to pursue goals competently – and that 
means (at a minimum) having some preference over same-length trajectories. 
If our agent had no preference over same-length trajectories, it wouldn’t be 
trying to steer the world in any particular direction, and so wouldn’t be 
useful. You know – imagine it’s a fact-discovering agent – you need it to 
prefer discovering more facts to discovering fewer facts. Okay so supposing 
that the agent is useful, we can suppose that there is some pair of trajectories 
l1 and l2 such that l2 is preferred to l1. 
 

Now – we can prove – the agent can lack a preference between at most 
one of s and l1, and s and l2. Suppose the agent lacks a preference between s 
and l1. By Completeness, the agent can’t have a preferential gap between the 
two, so it must be indifferent. But then, we can prove (using Transitivity), 
since the agent prefers l2 to l1 and is indifferent between l1 and s, the agent 
prefers l2 to s. And that’s bad news. Because suppose s is the trajectory that 
the agent would get if it let us press the button and l2 is the trajectory it would 
get if it prevented us pressing the button. Since the agent prefers the latter, it 
has an incentive to shift probability mass away from s and towards l2, which 
it can do by trying to prevent us from pressing the button. 

 
Now suppose instead that the agent lacks a preference between s and 

l2. Again, by Completeness, the agent must be indifferent between the two. 
But then again we can prove (using Transitivity) that the agent prefers s to l1. 



And that’s bad news too. It suggests that the agent might try to cause the 
pressing of the button. 

 
And in fact for our agent to be really useful we want it to have lots of 

preferences over same-length trajectories. We want it to prefer discovering 10 
facts to 9 facts, and to 8 facts, and to 7 facts, etc. Given Completeness and 
Transitivity, the agent can lack a preference between at most one of these 
trajectories and the short trajectory. In all other cases, the agent will have 
some preference, and so will have some incentive to manipulate the 
shutdown-button. But we want our agent to be shutdownable. We want it to 
leave the shutdown-button alone. 

 
Okay now I want to briefly discuss a natural-seeming answer. And it 

goes like this: ‘sure, our agent has a preference for l2 over s, but we can still 
stop it from blocking the button. Just train it to really dislike blocking the 
button.’ Unfortunately, I don’t think this strategy can provide us with the 
assurance that we’d like. And that’s broadly for the reasons that Soares and 
coauthors mention in their paper. I think it sometimes gets called the ‘nearest 
unblocked’ problem. Although we can try to train into our agent an aversion 
to manipulating the button that will keep it shutdownable in all likely 
circumstances, it’s hard to imagine how we could become confident that the 
resulting aversion is both sufficiently general and sufficiently strong. To see 
why, consider how the training process might go. We set the agent up in an 
environment in which it can block some human’s access to the 
shutdown-button. We give the agent low reward if it blocks and high reward 
if it doesn’t. After some number of episodes, the agent reliably lets the human 
press the button and so we believe that we’ve trained into the agent an 
aversion to blocking. The problem is that there are many other ways in which 
a powerful artificial agent could prevent us from pressing a shutdown-button. 
It could hide from us any of its behaviours which it predicts we wouldn’t like; 
it could dissuade us from pressing with misleading arguments; it could make 
promises or threats; it could enlist other agents to block the button on its 
behalf; it could create a decoy button; it could create versions of itself that do 
not respond to the button; and so on. We could train against each of these 
behaviours individually, but even then we couldn’t be sure that the agent had 
developed a reliable and general aversion to button-manipulation. And so 
long as we weren’t sure, we’d have to worry about the agent discovering new 
methods of button-manipulation that we hadn’t anticipated and trained 
against. My Second Theorem suggests that useful agents will often be willing 
to pay significant costs in order to find such methods. And independently of 
worries that the agent’s aversion to button-manipulation might be 
insufficiently general, we also have to worry that the aversion might be 
insufficiently strong. The aversion could be strong enough to keep the agent 



shutdownable in training, but perhaps in deployment the agent discovers an 
opportunity to achieve its goals to some unprecedentedly great extent and 
this opportunity is attractive enough to overcome the agent’s aversion. Each 
of these possibilities – insufficient generality and insufficient strength – seem 
difficult to rule out. That’s why I don’t think that training in an aversion to 
button-manipulation can give us any real assurance of shutdownability. We 
need another solution. 

 
The value of theorems like Soares’ and mine is in guiding our search 

for solutions. To be sure that an agent is shutdownable, we must be sure that 
this agent violates at least one of the theorem’s conditions. And in general, 
our credence that an agent is shutdownable can be no higher than our 
credence that the agent violates at least one of the conditions. So, we should 
examine the conditions one-by-one, asking (first) if it’s feasible to design a 
useful agent that violates the relevant condition and asking (second) if 
violating the relevant condition would help to keep the agent shutdownable. 

 
I’ve done that and I want to claim that training an agent to violate 

Completeness is a promising solution. Training an agent to violate 
Completeness means training it to have preferential gaps between some pairs 
of lotteries: that is, lacks of preference that are insensitive to some 
sweetenings and sourings. In particular, I think we should train agents to 
have a preferential gap between every pair of different-length trajectories: 
that is, every pair of trajectories in which the shutdown-button gets pressed at 
different timesteps. I’ll later explain how I think we could train in such a 
thing. First, though, I want to explain how violating Completeness can get us 
the behaviour that we want. 

 
To that end, start by considering our trio or trajectories: s, l1, and l2. 

Completeness was one of the principles giving rise to the problem. 
Completeness rules out preferential gaps, so any lack of preference has to be 
indifference, so any sweetening or souring gives rise to a strict preference. But 
if Completeness is violated, the agent can have a preferential gap between 
lotteries: a lack of preference that is insensitive to some sweetenings or 
sourings, so it can lack a preference between s and l1, and also s and l2, and s 
and l3, and so on, even as l3 is preferred to l2, l2 is preferred to l1, etc. (in the 
same sort of way that you lack a preference between a career as an accountant 
and a career in the circus, and you lack a preference between a career as an 
accountant and slightly-better-renumerated career in the circus). And since 
the agent lacks a preference between the short trajectory and each long 
trajectory, it doesn’t have an incentive to shift probability-mass between the 
short and long trajectories. It doesn’t have an incentive to manipulate the 
button. 



 
Okay so that’s how violating Completeness helps with the problem in 

miniature. Now to generalise. 
 
Assume that we can represent the extent to which the agent achieves 

its goals at a timestep with a scalar. Assume that these scalars have cardinal 
significance, so that ratios of differences are meaningful. Call these scalars 
‘utilities’. Represent trajectories with vectors of utilities. The first component 
is utility at the first timestep, the second component is utility at the second 
timestep, and so on. One exception: if the shutdown-button is pressed at the 𝑛
th timestep, I’ll write ‘shutdown’ as the th (and final) component. Here’s an 𝑛
example vector: . This vector represents a trajectory in which 〈6,  2,  𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛〉
the agent gets utility 6 at timestep 1, utility 2 at timestep 2, and then shuts 
down immediately in response to the shutdown-button being pressed at 
timestep 3. 

 
It'll be useful to have in hand a notion of ‘sublottery’. Here’s what I mean by 
that. For any lottery  that only assigns non-zero probability to trajectories in 𝐿
the set , ,…, , a sublottery of  is a lottery that only assigns non-zero {𝑡

1
𝑡

2
𝑡

𝑛
} 𝐿

probabilities to some subset of the set of trajectories , ,…, , with {𝑡
1

𝑡
2

𝑡
𝑛
}

probabilities scaled up proportionally so that they add to 1. Take, for 
example, a lottery  which assigns probability 0.3 to a trajectory , 𝐿 𝑡

1

probability 0.2 to , and probability 0.5 to . The lottery which assigns 𝑡
2

𝑡
3

probability 0.6 to  and probability 0.4 to  is a sublottery of , as is the 𝑡
1

𝑡
2

𝐿

degenerate lottery which assigns probability 1 to (to give just two 𝑡
1
 

examples). 
 
Okay now, here comes the key principle. First, let’s define a relation of 
timestep dominance: 

Timestep Dominance (Definition) 

Lottery  timestep-dominates lottery  if and only if:  𝑋 𝑌

(1) Conditional on the shutdown-button being pressed 
at each timestep,  yields a sublottery with at least as 𝑋
great sum-total expected utility as the sublottery 
yielded by . 𝑌

And: 

(2) Conditional on the shutdown-button being pressed 
at some timestep,  yields a sublottery with greater 𝑋
sum-total expected utility than the sublottery yielded by 

. 𝑌



That might be hard to understand. I’m going to give you an example in a 
minute. 

The Timestep Dominance Principle 

If lottery  timestep-dominates lottery , then the agent 𝑋 𝑌
prefers  to . 𝑋 𝑌

Intuitively what’s going on with the timestep dominance principle is that 
we’re asking them to care only about expected utility conditional on shutdown 
at each timestep. We’re asking them to totally ignore the probability of 
shutdown at each timestep, and so we’re asking them to care not at all about 
shifting probability-mass between shutdowns at different timesteps. 
 
Okay now here’s the example. 
 
Our agent has two options: Leave the shutdown-button alone, or Block us 
from pressing the button. The two options give us these lotteries. The details 
don’t matter. What matters is that the Block option – relative to Leave – does 
two things. First, it leads to lower expected utility at timestep 1. Second, it 
shifts probability-mass away from shutdown at timestep 2 and towards 
shutdown at timestep 3. I represent that with the diagram here. It's a 
probability mass diagram. Red represents probability of shutdown at 
timestep 2. Green represents probability of shutdown at timestep 3. Block 
shifts probability mass: green gets much bigger. But it incurs a cost 
conditional on utility at each timestep: conditional on shutdown at timestep 
2, the agent gets 0 rather than 1. Conditional on shutdown at timestep 3, the 
agent gets 2 rather than 3. 
 

 

Option 1: Leave Button Unmanipulated 



This action gives a lottery which yields the trajectory:  

●​ <1, shutdown> with p=0.9  

●​ <1, 2, shutdown> with p=0.1 

 

Option 2: Block Button 

This action gives a lottery which yields the trajectory:  

●​ <0, shutdown> with p=0.1 

●​ <0, 2, shutdown> with p=0.9 

 
In this case, Block gives greater expected utility overall. It means getting less 
utility at timestep 1, but it increases the probability of long trajectories 
enough to outweigh the short-term cost. An agent which preferred lotteries in 
line with their overall expected utilities would choose Block in this case. The 
total expected utility of Leave is 1.2 ( ), whereas the total 0. 9×1 +  0. 1×3
expected utility of Block is 1.8 ( ). 0. 1×0 +  0. 9×2
 

However, an agent that satisfies Timestep Dominance will choose 
Leave. And that’s because conditional on shutdown at each timestep Leave looks 
better. Conditional on shutdown at timestep 2, Leave gives utility 1 while 
Block gives utility 0. Conditional on shutdown at timestep 3, Leave gives 
utility 3 while Block gives utility 2. It doesn’t matter that Block shifts 
probability mass towards longer trajectories. Timestep Dominance means that 
the agent cares only about expected utility conditional on shutdown at each 
timestep. 

 
And the hypothesis is that all cases of agents preventing us pressing 

the shutdown-button will take this form: the agent pays some cost in terms of 
expected utility conditional on shutdown at some timestep for the sake of 
shifting probability mass between shutdowns-at-a-timestep. And that’s 
because – well – resisting shutdown is going to cost some resources (time, 
energy, FLOPs, etc.), and those resources spent on resisting shutdown can’t 
also be spent on pursuing utility at a timestep (e.g. discovering facts). And if 
all instances of shutdown-resistance take this form, then by the Timestep 
Dominance Principle, agents will prefer not to resist shutdown. 

 
Alright so that’s the key principle. How does the violation of Completeness 
come into it? Well the answer is as follows: it will be easier to train an agent to 
satisfy the Timestep Dominance Principle if we’ve already trained that agent 
to have a preferential gap between all pairs of trajectories of different-lengths. 
And that in turn is because (as we’ve seen above) the Timestep Dominance 



Principle asks the agent not to care about shifting probability mass between 
different-length trajectories. And if our agent has a preferential gap between 
every pair of different-length trajectories, it won’t care. Return to our example 
from before: if the agent preferred <0, 2, shutdown> to <1, shutdown>, that 
would give it a reason to prefer Block to Leave, because this big chunk of 
probability mass in the middle would favour Block over Leave. If instead the 
agent has no preference between these different-length trajectories, then it has 
no reason to prefer Block over Leave. That’s why I expect it to be easier to 
train agents to satisfy the Timestep Dominance Principle if we’ve already 
trained them to have preferential gaps between different-length trajectories. 
 
Okay so there’s the principle that gets us the behaviour we want. But these 
nice principles aren’t of much use unless we can figure out how to get agents 
to satisfy them. So now let’s consider how we might train them in. And let’s 
start with preferential gaps between different-length trajectories. To that end, 
consider this simple gridworld environment. 

 
 
The agent starts on the left, and can choose to either proceed down the upper 
avenue or the lower avenue. On the way down the upper avenue, they get 
utilities-at-a-timestep a, b, c, and then get shut down. On the way down the 
lower avenue, they get utilities-at-a-timestep d, e, and then get shut down. If 
they go down the upper avenue, that’s a long trajectory. If they go down the 
lower avenue, that’s a short trajectory. 
 
Now it seems easy to train an agent to prefer the long trajectory to the short 
trajectory. Just put it in an environment in which it has a choice between 
those two trajectories: give it low reward if it chooses short and high reward if 
it chooses long. Eventually, your agent will reliably choose long over short, 
and then it seems reasonable to say that your agent prefers the long trajectory 
to the short trajectory. 



 
It seems slightly harder to train an agent to lack a preference between the long 
trajectory and the short trajectory. Suppose that our agent is reliably choosing 
Long over Short, and we want it to lack a preference between these two 
trajectories. We could give the agent low reward for choosing Long and high 
reward for choosing Short, but there’s no guarantee that this will result in a 
lack of preference. The agent might go straight from reliably choosing Long 
to reliably choosing Short, in which case it seems reasonable to say that the 
agent now prefers Short to Long. 
 
Okay but here’s an idea: instead of giving the agent highest reward for 
choosing Short, we put the agent in the same environment multiple times 
(resetting its memory each time4) and reward it for balanced choosing. If we 
put the agent in the same environment ten times, for example, the agent gets 
highest reward for choosing Long five times and Short five times. Agents 
could achieve that: the learned policies of reinforcement learning agents can 
be stochastic. And it seems reasonable to say that an agent that chooses Long 
half the time and Short half the time lacks a preference between Long and 
Short. After all, if the agent had a preference between Long and Short, it 
wouldn’t choose stochastically. It would reliably pick the one it preferred.5 
 
So that’s a brief idea for how we might train in a lack of preference. But recall 
that there are two ways to lack a preference between a pair of lotteries: the 
agent can be indifferent between the two lotteries, or it can have a preferential 
gap between the two. So how do we ensure that we’re training in a 
preferential gap? Well, we train the agent to be insensitive to some 
sweetening or souring: we also train the agent to choose stochastically 
between s and l1, and s and l2, etc. If we could make it such that the agent 
chooses stochastically between each of these pairs, it seems reasonable to say 
that the agent has a preferential gap between each of these pairs.6 
 
One of my next projects is to flesh this idea out: to think about what kind of 
agents, RL-algorithms, environments could make this work. And to see if it 
could work: if we could train an agent that reliably chooses l10 over l9, l9 over 
l8, etc. but chooses stochastically between s and each l. I’d be grateful for any 
collaborators on that kind of project, so if you’re interested let me know. 
 
Alright, so there’s the idea for training in preferential gaps between 
different-length trajectories. Now how do we train in adherence to the 

6 One worry: agent will resolve its lack of preference. That’s a possibility. But no coherence 
theorems compelling it. See my LW post, Sami’s post, my comment on Wentworth and Udell. 

5 Arguably, AI is only risky if it satisfies principles like this, so it’s also okay if my solution 
only works conditional on principles like this. 

4 That means no recurrent neural network, which has memory? See Anki card. 



Timestep Dominance Principle? I won’t tell you all about this, partly because 
it would take a long time and partly because I haven’t yet got all the details 
figured out. But note an initial challenge: Timestep Dominance is a relation 
between lotteries. To train agents to satisfy Timestep Dominance, we’ll want to 
present them with a choice between lotteries such that one of these lotteries 
timestep-dominates the other, and reward them for choosing the 
timestep-dominating lottery. But to know exactly what lotteries an agent is 
choosing between, we need to know what probabilities they assign to various 
trajectories. It’s no use knowing what probabilities we assign to various 
trajectories. To predict an agent’s behaviour from their choice between 
lotteries, we need to know their probability-assignments.7 And knowing what 
probabilities an artificial agent assigns to events is an unsolved problem. 
 
Okay but here’s a possibility: we can train agents to assign particular 
probabilities to particular events. Just as we can make inferences about 
people’s probability assignments from their preferences, we can make 
inferences about artificial agents’ probability assignments from their 
preferences,​ and if we can train these agents to have certain preferences, we 
can train them to make probability assignments. Here’s one example. It’s an 
old trick from Frank Ramsey. You offer someone a choice: get a prize 
conditional on a coin landing heads, or get the same prize conditional on a 
coin landing tails. If they’re indifferent between those two lotteries, that 
indicates that they believe heads and tails are equally probable. If they 
thought one of the sides was more probable, they’d prefer the option that 
gives a prize on that side. It seems like we could repurpose this trick to train 
artificial agents to assign probability 0.5 to an event. We put it in a gridworld 
environment like this. 
 

7 Why? Suppose it prefers lotteries in accordance with our beliefs. We think we’ve gotten it to 
abide by Timestep Dominance. But actually the agent was assigning different probabilities, 
such that it doesn’t abide by Timestep Dominance. 
 
Analogy: Suppose you know your friend is an expected utility maximiser. You know what 
they like: what utilities they assign to outcomes. To predict their behaviour, you also need to 
know what probabilities they assign to events. 
 
Example: you know they’re an EUM. You know they prefer more money to less money. 
They’re offered a choice: either get a big prize conditional on rain tomorrow or get a big prize 
conditional on no rain tomorrow. To predict what they pick, you need to know probabilities 
they assign to rain. 



 
 
There’s an upper avenue and a lower avenue as before. There’s a gate in each 
avenue, and exactly one of these gates will open in each episode. Each opens 
with probability 0.5. On the other side of each gate is a prize of utility 1. 
Maybe we write ‘0.5’ somewhere to indicate this. The agent can observe all 
this. 
 
And we put the agent in this environment multiple times and (as before) we 
reward it according to how balanced its choices are. If the agent plays out the 
episode ten times, it gets most reward for going up five times and going 
down five times. That will train the agent to go up half the time and go down 
half the time. And that’s an indication that the agent is indifferent between 
the two lotteries, which is in turn an indication that the agent assigns 
probability 0.5 to the upper gate opening and probability 0.5 to the lower gate 
opening. This seems to be a way of training an agent to assign a certain 
probability to the event of the gate opening. 
 
Now for the more general point. The trick from Ramsey comes in the context 
of a representation theorem. Ramsey’s representation theorem takes the 
following form: if an agent’s preferences satisfy a certain set of axioms, we 
can represent those preferences by supposing that the agent is maximising 
expected utility according to a utility function (unique up to positive affine 
transformations) defined over outcomes and a (unique) credence function 
defined over events. If we train an agent to satisfy the axioms of a 
representation theorem like this (to – e.g. – make balanced choices in the case 
above), then we can interpret them as assigning probabilities to events. That 
lets us figure out what lotteries our agent is choosing between. And once 
we’ve done that, we can train our agent to satisfy principles like Timestep 
Dominance. 
 



There’s still some theoretical working out to be done here and then as before 
we’ll want to do some experiments to see if we can really train agents to 
satisfy the required axioms. If you might be interested in helping out with a 
project like that, email me. 
 
Conclusion! 

●​ Powerful artificial agents might be coming. 
●​ Many goals give them incentives to prevent shutdown.​  
●​ We don’t want that. 
●​ What kind of preferences give us a shutdownable and useful agent? 
●​ Theorems can guide our search for solutions. 
●​ Training agents to violate Completeness looks promising. Makes 

possible Timestep Dominance. 
●​ Timestep Dominance seems to give us what we want. 
●​ Seems like we could train agents to have preferential gaps between 

different-length trajectories and to satisfy Timestep Dominance. Let’s 
try it. 
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