
OpenTelemetry Project Roadmap Draft

NOW PUBLISHED HERE:
https://github.com/open-telemetry/com
munity/pull/1312

What We’ve Accomplished
OpenTelemetry has come a long way since its announcement in May of 2019!

In the past three years, OpenTelemetry’s language agents and SDKs have established
themselves as the standard way to propagate and capture distributed traces within backend
services, the Collector has been widely adopted across the industry as an easy and powerful
way to capture and perform basic processing of traces and system metrics, and
OpenTelemetry’s native metrics support has been released to the public and is becoming
adopted.

Since late 2020, OpenTelemetry has been the second most active project in the Cloud Native
Computing Foundation, and the number of companies and people contributing to and using the
project continues to grow. At the same time, there’s a need within various project SIGs for more
permanent maintainers, and community members have also expressed a desire for more vision
to direct future work.

With tracing and metrics support now generally available across much of the project,
OpenTelemetry has fulfilled its original promise. This represents an opportune time for us to
come together as a community, take stock of what’s working well and what isn’t, and chart our
next steps.

Community-wide Projects

Logging (in-progress)
OpenTelemety established a logging SIG in mid-2020, with two goals:

https://github.com/open-telemetry/community/pull/1312
https://github.com/open-telemetry/community/pull/1312


1. Providing a performant path for capturing logs from existing sources (typically text files
on disk), where all captured logs have OpenTelemetry’s metadata consistently applied to
them.

2. Providing a new, strongly-typed and extremely high-performance logging path for new
applications, which allows logs to be authored and transmitted without being parsed from
text, and which enforces the consistency of all metadata.

Much progress has been made on the first item, particularly through the donation of the Stanza
logging agent into the OpenTelemetry Collector and the merging of Elastic Common Schema
into the OpenTelemetry semantic conventions as a single schema project. While this
functionality is not yet considered GA, it is being used in production at several vendors and
end-users. OpenTelemetry’s logging specification and protocol are now GA, meaning that no
breaking changes will occur to them. While more work is required to take this functionality to
GA, the scope of this work is known and a project plan has already been established.

Client Instrumentation (in-progress)
OpenTelemetry JS has technically supported capturing spans from web browsers since its first
releases, however this behaviour was mostly unspecified, and there was no equivalent
functionality for other types of client applications like those on Android, iOS, or Windows.

In late 2021, the Client Instrumentation SIG (often called the RUM SIG) was established, which
seeks to specify client instrumentation behaviour so that there is consistency in the data
captured from and in the developer-facing telemetry interfaces in different types of client
applications. This SIG is currently completing its first round of spec work, which will need to be
implemented by the JS, Swift, Java, and other SIGs once it is complete.

OpenTelemetry Control Plane (in-progress)
Since OpenTelemetry’s initiation, end-users and vendors have expressed a desire to (a)
understand what SDKs, language agents, and Collectors are deployed within their environment
(along with their status), and to (b) be able to make changes to the configuration of these
artifacts or possibly even update agent binaries.

Specification work is already underway to address both of these needs, and the agent
management SIG has already produced a specification for OpAMP, the protocol that will drive
these interactions. Over time, the SIGs that develop various OpenTelemetry artifacts will need to
implement OpAMP to enable these scenarios.



Profiling
Distributed profiling has been a long-standing topic of discussion within OpenTelemetry, and
contributors to other profiling projects have advocated for it to be added to OpenTelemetry as an
additional signal type.

Sampled heap and CPU profiles would allow OpenTelemetry to extend end-users’ visibility to
the performance of their actual code. While other profiling solutions allow this kind of inspection
today, few are able to properly correlate profiles with application and infrastructure resource
metadata, and even fewer are able to correlate profiling telemetry with distributed traces or
other signals. Adding this to OpenTelemetry would allow analysis solutions and end-users to
find instances of poor performance between services and then immediately chase these down
to their root cause within code.

Production Debugging (proposed)
While less common than production profiling solutions, production debugging (the creation of
non-blocking breakpoints or log generation points in running services) could be a valuable
addition to OpenTelemetry. However this seems less immediately useful than the other items
listed above.

Capturing Environment Data
Can we get OTel components to capture environment variables or other environment data?

Stabilizing Semantic Conventions (in-progress)
● We can’t release stable instrumentation because the semantic conventions aren’t

stabilized
● Currently being worked on for HTTP and messaging
● May also involve stabilizing resource conventions

Self-Contained Projects

Demo (in-progress)
OpenTelemetry launched a community demo SIG in May 2022, which will provide sample
applications that demonstrate OpenTelemetry’s capabilities to prospective end users, and also
allow the community to better perform automated testing of OpenTelemetry components. This
SIG will accelerate their work by starting with existing cloud demo applications like Google’s
Hipstershop.



eBPF (in-progress?)
Could / should expand into a community-wide project.

More Instrumentation (in-progress within each SIG)
As a project, we will continually add to and update our cohort of instrumentation for each
language and for the Collector.

Other Areas of Investment

Completing Existing Spec Implementations

Guidance for New Project Contributors
Many SIGs have great onboarding guides, but some new contributors just want to help out the
project in the best way possible, and are willing to work on ~any SIG in any capacity
(developers, doc writers, etc.). We currently don’t have any guidance for them.

Getting More Maintainers
OpenTelemetry’s SIG maintainers have all made a massive commitment to the project, and
while they are recognized for this, we should find ways to reduce their burden.

One of the most apparent ways to do this is to promote more maintainers within the project,
which would allow existing SIG maintainers to spread the load. To achieve this, we should (a)
recruit more contributors into OpenTelemetry (as some of them will want to become
maintainers), and (b) build a more clear and easy to follow path to maintainership.

Better Managing ‘Contrib’ Contributions
Related to the above, SIG maintainers have consistently labeled managing instrumentation and
exporter contributions (usually stored in each SIG’s ‘contrib’ repository) as a massive but
necessary time-sink. While some work has already been done to alleviate this, more is still
necessary.

One of the discussed proposals is to use folder-based permissions in GitHub to allow
contributors who lack maintainer or approver permissions to maintain their own contributions.
For example, a vendor could maintain the folder containing their exporter within the
Collector-Contrib repository, meaning that the project maintainers would only have to interact
with these projects if they break a build.



Promoting OpenTelemetry’s APIs and OTLP to Telemetry Source
Developers
OpenTelemetry provides significant value to thousands of organizations around the world. While
much of this value comes from the features and functionality that the community has built, all of
this would be useless without OpenTelemetry’s components ability to integrate with various
telemetry sources (web frameworks, client libraries, databases, etc.) out of the box.

Today, many of these integrations are provided by contributions to OpenTelemetry’s SIG-specific
contrib repositories that call out to telemetry source interfaces, capture data and convert it to an
OpenTelemetry-compliant format, and then submit these to OpenTelemetry’s APIs (either
in-process or via OTLP). This instrumentation is functional, but incurs a large development and
maintenance burden on the project.

The most ideal integrations occur when telemetry sources themselves use the OpenTelemery
APIs or OTLP to generate telemetry. Some of these exist already, however we need to do work
as a community to promote the usage of the OpenTelemetry APIs and OTLP amongst the
maintainers of these telemetry sources. We haven’t made a concerted effort for this thus far, but
with the metrics APIs and OTLP declared GA, we can commence this immediately.

Promoting OTLP to Analysis System Developers

Improving Operationalization, Project Confidence, etc.

Prioritization

Votes at Kubecon Votes on maintainers call Project

xxxxxxxxxxxxxxxxxxxxxxx xxxxx Logging

xxxxxxx xxx Client instrumentation

xxxxxxxxx Improving the maintainer
experience

xxxxxxxxxxxxx xxx Control plane

xxxxxxxxxxxxxxxxxxxx x Profiling



xxxxx x Promoting APIs and OTLP

xxxxx Capturing environment data

xxxxxxxxxx x Demo

x eBPF

xxx Promoting OTLP to analysis
system providers

xxxxxxxxxxxxxxxxxxx xxxxxxxx Improving operationalization,
documentation, project
confidence, etc.

xxxxxxxxxxxx Stabilizing Semantic
Conventions


