
Explainer: base::OnceCallback
tzik@chromium.org

2016-11-16
Self Link: go/callback-explainer, goo.gl/YZiUL1

base::OnceCallback is a move-only and single-call callback class, that is intended to replace most of
base::Callback usage. We added base::RepeatingCallback as an alias of current base::Callback, that can be
run more than once.
This document explains the basic usage of base::OnceCallback. See //docs/callback.md for more detail.

Motivations and benefits
Clear lifetime of the bound arguments
Declaring oneshot-ness in the type
Cleaner movable type support

Using OnceCallback
Creating a OnceCallback
Running a OnceCallback
Passing a OnceCallback to another function
Converting Callback to OnceCallback

Migration Plan
Migrate threading primitives
Migrate trivial part with a clang refactoring tool
Migrate Mojo-generated code
Migrate others

Discussion:
Q: Can we avoid rvalue qualified Callback::Run()?

Motivations and benefits

Clear lifetime of the bound arguments
Since the internal state of base::Callback is ref-counted, it’s unclear when the bound arguments is destroyed.
On the example below, |bar| can be destroyed either on the original thread or the destination thread,
depending on the thread scheduling.

base::Closure closure = base::Bind(&Foo, bar);
task_runner->PostTask(FROM_HERE, closure);

With the new code, once the PostTask completes successfully, |bar| will be destroyed on the target thread
regardless of the thread scheduling.

base::OnceClosure closure = base::BindOnce(&Foo, bar);
task_runner->PostTask(FROM_HERE, std::move(closure));

Declaring oneshot-ness in the type
Since the bound arguments are opaque to the caller of Callback::Run(), it’s unclear that the callback can be
called more than once.

void Foo(const base::Closure& closure) {

mailto:tzik@chromium.org
https://goto.google.com/callback-explainer
http://goo.gl/YZiUL1
https://chromium.googlesource.com/chromium/src/+/master/docs/callback.md

 closure.Run();
 closure.Run(); // Unsafe. If an object is bound with base::Passed, the second invocation hits CHECK.
}

With the new code, oneshot-ness is included in the type. OnceCallback can be called only once, and
RepeatingCallback can be called more than once. As OnceCallback requires std::move() on its invocation, the
misused case can be found easier as a use-after-move. We may want to use modified clang-tidy or
-Wconsumed option to detect the use-after-move statically.

void Foo(base::OnceClosure closure) {
 std::move(closure).Run();
 std::move(closure).Run(); // Use-after-move.
}

Cleaner movable type support
The implementation of Bind cannot move the bound arguments to the target function by default, since the
resulting Callback may be run more than once.

void Foo(std::unique_ptr<int>);
base::Bind(&Foo, base::Passed(base::MakeUnique<int>())); // Needs base::Passed to opt-in to move-out.
base::BindOnce(&Foo, base::MakeUnique<int>()); // OnceCallback moves out the bound arguments by default.

Using OnceCallback

Creating a OnceCallback

void Foo(int, int) {}
// Bind 123 to the first parameter of Foo.
base::OnceCallback<void(int)> cb = base::BindOnce(&Foo, 123);

void Bar(std::unique_ptr<int>) {}
base::OnceClosure cb = base::BindOnce(&Bar, base::MakeUnique<int>());

BindOnce creates OnceCallback. The semantics is mostly same to Bind except for the return type, and all
valid Bind arguments are also valid on BindOnce.
Note that BindOnce doesn’t need base::Passed on move-only type. It moves the bound arguments from the
internal storage to the target function by default.

Running a OnceCallback

base::OnceCallback<void(int)> cb;
std::move(cb).Run(42);
// |cb| is consumed by Run(), and no longer valid below.

base::Bind(&Foo).Run("Hello, world!");

base::OnceClosure closure;
base::ResetAndReturn(&closure).Run();

Unlike Callback, OnceCallback can be run only via rvalue. Use std::move() or call Run() on a temporary object.

Passing a OnceCallback to another function

using CompletionCallback = base::OnceCallback<void()>;
// Take the callback by value.
void DoWorkAsync(CompletionCallback cb) {}

CompletionCallback cb = base::BindOnce(&OnComplete);
// Pass the callback by rvalue-reference.
DoWorkAsync(std::move(cb));

DoWorkAsync(base::BindOnce(&OnComplete));

Pass the OnceCallback argument as a rvalue-reference, and take it by value.

Converting Callback to OnceCallback

base::Callback<void(int)> cb;
base::OnceCallback<void(int)> cb2 = cb;

void Foo(base::OnceClosure) {}
Foo(cb);

Callback is implicitly convertible to OnceCallback, so that consumers of Callback can migrate to OnceCallback
before their users migrate.
TODO: Passing OnceCallback to Objective-C blocks

Migration Plan
The migration from Callback to OnceCallback will have several phase.

Migrate threading primitives
As the first phase of the migration, we should migrate base::TaskRunner and its subclasses. Since most of
callback objects are eventually consumed by base::TaskRunner, OnceCallback is generally ready to use after
this phase.

Migrate trivial part with a clang refactoring tool
Some typical case of base::Bind usage can be replaced with base::BindOnce in bulk using a clang tool. E.g.:
implicit conversion from a resulting Callback of Bind to OnceCallback.

Migrate Mojo-generated code
Mojo-generated code is another major consumer of callback objects. We should add a flag to use
OnceCallback in the code generator, and migrate the implementation of the interface one by one.

Migrate others
There will remain a number of non-trivial Callback usage that need manual migration. Will write a detailed
instruction document for migration, and ask chromium-dev for volunteer.

Discussion:

Q: Can we avoid rvalue qualified Callback::Run()?
Pros:

●​ std::move(cb).Run() may look unusual
●​ Violates Google C++ Style Guide, that limits rvalue reference to move-{ctor,assign} and Perfect

Forwarding.
Cons:

●​ Aligns to upcoming C++ standard: bugzilla discussion, N4543, P0045, P0288R1
●​ Possible compiler use-after-move error detection by clang-tidy or -Wconsumed.
●​ Uniform usage to both type of Callback, that reduces the complexity of the Callback implementation,

and smaller migration cost.
Alternatives:

https://google.github.io/styleguide/cppguide.html#Rvalue_references
https://issues.isocpp.org/show_bug.cgi?id=34
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4543.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0045r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0288r1.pdf

●​ Non-const version of Callback::Run() overload.
●​ Non-const Callback::RunAndReset().
●​ Non-method base::Run() & pass-by-value.

○​ `std::move(cb).Run(arg)` will be `base::Run(std::move(cb), arg)`

	Explainer: base::OnceCallback
	Motivations and benefits
	Clear lifetime of the bound arguments
	Declaring oneshot-ness in the type
	Cleaner movable type support

	Using OnceCallback
	Creating a OnceCallback
	Running a OnceCallback
	Passing a OnceCallback to another function
	Converting Callback to OnceCallback

	Migration Plan
	Migrate threading primitives
	Migrate trivial part with a clang refactoring tool
	Migrate Mojo-generated code
	Migrate others

	Discussion:
	Q: Can we avoid rvalue qualified Callback::Run()?

