
CS 60 - HW8

Homework 8: Binary Search Trees

In this assignment, we will implement functions that manipulate binary search trees (BSTs) in a

variety of ways. Remember that:

●​ We never have duplicate keys in a BST.

●​ All keys in a left subtree are strictly less than the key at their root.

●​ All keys in a right subtree are strictly greater than the key at their root.

As we mentioned in the weekly, we will practice with BSTs in both Racket and in Java. Even

though it can be difficult to switch back and forth between the two languages, we are asking you

to context switch because working from different perspectives can help reinforce the core

concepts beyond the specifics of coding.

You are welcome (and encouraged) to buddy or pair program again for all parts of this

assignment! (The syllabus can remind you of the differences.) If you have not tried buddy or pair

programming, give it a try! Feel free to use the “Search for Teammates” post on Piazza to

identify potential programming buddies, or ask the teaching team to help you find a partner

during lab hours.

We are really excited to help people on Piazza - so please ask questions early and often! Some

more tips:

●​ For questions, please use Piazza with the #hw8 tag.

●​ Your code will be graded anonymously. Please do not include your name anywhere

in your submission.

●​ If you choose to pair program, remember to add your partner to each

Gradescope submission.

— Your profs & your awesome Gruotoring team!

Problem 1: BSTs in Racket

Starter Files and Introduction

Part A: Write test trees (and practice making BSTs)

Part B: Test and implement height

Part C: Test and implement find-min

Part D: Test and implement in-order

Part E: Explain the bug in insert

Part F: Test and implement delete

Problem 2: BSTs in Java

Starter Files and Introduction

Part A: Explain code in put

Part B: Refactor the BSTNode constructor

Part C: Implement getMinKey

Part D: Implement addKeysToArrayList

Part E: Implement remove

Part F: Refactor to store and use an instance variable size

Rubric

Problem 1: BSTs in Racket

●​ Learning Goal: Implement BST functions in Racket

●​ Prerequisites: Racket basics & BST algorithms

●​ Starter files: BST.rkt, BSTfunctions.rkt, BSTtests.rkt

●​ Submit: BSTfunctions.rkt, BSTtests.rkt, text submission (Part E)

Starter Files and Introduction

●​ BST.rkt - Contains the BST data structure. You do not need to modify this file or turn it

in.

●​ BSTfunctions.rkt - Where you will do your work.

●​ BSTtests.rkt - Where you will write additional tests.

For this problem, we will keep things simple to focus on the core BST structure. Specifically, we

will require that our BSTs contain integer keys (and no values). Because BSTs cannot contain

duplicate keys, these BSTs implement a set. (Later, we will have BSTs store both keys and

values, i.e. implement a map.)

Because Racket is a functional language, it does not have the ability to define object-oriented

data structures.
1
 To compensate for the lack of classes, we will represent trees using lists. Each

node is represented by a list that contains the root key, the left subtree, and the right subtree.

The subtrees can themselves be lists, giving rise to a nested list structure.

However, as good CS practitioners, we want to abstract away this underlying implementation

from users! In the starter file BST.rkt, we have provided methods for constructing BSTs,

accessing elements of a BST, and querying the structure of a BST:

●​ Construct a BST
○​ (make-BST key left right)

○​ (make-empty-BST)

○​ (make-BST-leaf key)

●​ Access elements of a BST
○​ (key tree)

1
 Technically, Racket provides functionality for classes in racket/classes, but it is not built-in to the

base Racket library.

https://drive.google.com/file/d/1TswqDvbzqc9o0fQXbZFwQcWY-XZ_hr_0/view?usp=sharing
https://drive.google.com/file/d/1TVmJnez72nvLPheHKov0IZC8tVu_5EtE/view?usp=sharing
https://drive.google.com/file/d/1-HvKe0epTwV-CRrR8nKE5oh7kTcwBlZE/view?usp=sharing

○​ (leftTree tree)

○​ (rightTree tree)

●​ Query the structure of a BST
○​ (emptyTree? tree)

○​ (leaf? tree)

Note that all functions except emptyTree? require that the input tree be non-empty.

Using these functions will make our code more readable and adaptable.

●​ This abstraction helps human readers (including ourselves) recognize when we are

working with BSTs (and when we are not). For example, say we wanted to create a sorted

list from a BST. If we were to use list functions to access the elements of our BSTs, it

would not be clear to a human reader if a particular call to first or cons was working

with a normal list, or with one of our special BST lists.

●​ This abstraction allows us to change the underlying implementation of a tree. For

example, we could change the order of the elements to “left subtree, root key, right

subtree”. Perhaps more compellingly, we could make larger structural changes such as

allowing the tree nodes to store both keys and values.

Important: Not using the provided helper functions will lose style points.

Read through the starter code to help you gain intuition for the rest of this problem.

●​ You must use the recursive structure of the tree to implement the missing functionality.

●​ You definitely should not (1) sort a list anywhere, nor (2) call flatten.

Part A: Write test trees (and practice making BSTs)

We want to test our BST functions! Each test case is going to need a tree to work with. Let us

create some trees and give them names so that we can refer to them in our test cases.

We have defined a complex tree bigBST that you can use in your test cases. Here is its graphical

representation:

None

(define bigBST ​
 (make-BST 42​
 (make-BST 20​
 (make-BST 7​
 (make-BST-leaf 1)​
 (make-BST-leaf 8))​
 (make-BST 31​
 (make-empty-BST)​
 (make-BST-leaf 41)))​
 (make-BST 100 ​
 (make-BST-leaf 60)​
 (make-empty-BST))))

In BSTtests.rkt, create these four simpler trees to use in your testing, paying careful attention

to the names given below:

(define tree-wOneNode

(define tree-wLeftChild (define tree-wRightChild (define tree-wTwoChildren

Before moving on, be sure the test cases for the BST data structure pass, in BSTtests.rkt.

Part B: Test and implement height

(height tree) takes in a binary search tree and outputs the number of edges in the longest

path from the root of BST to any one of its leaves. Remember that we define the height of the

empty binary search tree to be -1.

Example tests:

http://www.youtube.com/watch?v=wcIRPqTR3Kc&feature=youtu.be

None

None

(check-equal? (height (emptyBST)) -1)​
(check-equal? (height bigBST) 3)

Let us use test-driven development. That means you should:

1.​ First, uncomment the provided test cases in BSTtests.rkt.

2.​ Then, write test cases that check the output of height when called on each of the trees

you created (i.e. tree-wOneNode, tree-wLeftChild, tree-wRightChild, and

tree-wTwoChildren).

3.​ Finally, implement height in BSTfunctions.rkt to make the tests pass.

Helpful note: It has been awhile since we used Racket! As a reminder, you can submit in-progress work to

Gradescope.

●​ Submit BSTtests.rkt to check that your tests pass our sample solution. If not, reread the function

description again to make sure you understand the intended functionality.

●​ Submit BSTfunctions.rkt to check that your functions pass our tests (including hidden tests).

Be sure to keep the tags ; provided tests and ; student tests.

Part C: Test and implement find-min

(find-min tree) takes in a non-empty binary search tree and outputs the key of the smallest

node in that binary search tree.

Example tests:

(check-equal? (find-min bigBST) 1)

For this part, you should:

1.​ First, uncomment the provided test case.

2.​ Then, write test cases that check the output of find-min when called on each of the trees

you created.

3.​ Finally, implement find-min to make the tests pass.

None

Part D: Test and implement in-order

(in-order tree) takes in a binary search tree and outputs a list of all of the elements, in

increasing order.

Hint: You can call in-order recursively on the left and right subtrees. If you did this, where

would the root go?

Example tests:

(check-equal? (in-order emptyBST) '())​
(check-equal? (in-order bigBST) '(1 7 8 20 31 41 42 60 100))

For this part, you should:

1.​ First, uncomment the provided test cases.

2.​ Then, write test cases that check the output of in-order when called on each of the trees

you created.

3.​ Finally, implement in-order to make the tests pass.

Part E: Explain the bug in insert

The starter code provides two implementations of (insert e tree). Both take in an element e

to insert and a BST. insert correctly inserts the element, but insertWrong incorrectly inserts

the element.

Run the two versions (in a separate file or in the interactions window). On Gradescope,

complete the corresponding short-answer question, briefly explaining (1-2 sentences)

why insertWrong is incorrect, and why we need to make a new BST every time we call insert.

Part F: Test and implement delete

(delete e tree) takes as input an element e and a binary search tree tree. As with all things

BST in Racket, e should be an integer. If e does not appear in tree, there is nothing to delete,

and the function outputs tree. (More specifically, the function outputs a BST that is identical in

structure to tree.) Otherwise, e does appear in tree, and the function outputs a BST that is

identical to tree but with the node containing e deleted.

But wait, there’s more! Generating this new tree requires adjustments to be made to the input

tree ensuring that the result is a valid binary search tree. Let us remind ourselves of these

adjustments:

●​ If the node to delete has zero children, it is straightforward to delete.

●​ Similarly, if the node has only one (non-empty) child, it is replaced by that child.

●​ When the node to be deleted has two non-empty children, we have to determine which of

its children (or descendants) should take its place!

○​ For the sake of this problem, the node that should take e's place should be its

successor, defined as the smallest element in the tree that is greater than e.

○​ Hint: Use your find-min function!

○​ If you are unsure where to start or get stuck, try reviewing this video from the

weekly.

https://www.youtube.com/watch?v=wcIRPqTR3Kc&feature=youtu.be

None

Here are some example tests:

(define bigBST_without20​
 (make-BST 42​
 (make-BST 31​
 (make-BST 7​
 (make-BST-leaf 1)​
 (make-BST-leaf 8))​
 (make-BST-leaf 41))​
 (make-BST 100​
 (make-BST-leaf 60)​
 (make-empty-BST))))

(check-equal? (delete 20 bigBST) bigBST_without20)​
​
(define bigBST_without42​
 (make-BST 60​
 (make-BST 20​
 (make-BST 7​
 (make-BST-leaf 1)​
 (make-BST-leaf 8))​
 (make-BST 31​
 (make-empty-BST)​
 (make-BST-leaf 41)))​
 (make-BST-leaf 100)))
​
(check-equal? (delete 42 bigBST) bigBST_without42)

For this part, you should:

1.​ First, uncomment the provided test cases.

2.​ Then, write the following test cases that check the output of delete. Use the trees that

you created when possible, and define new trees when needed.

●​ Remove X from a tree that does not contain X
●​ Remove X from a tree where X is the only node
●​ Remove X from a tree where X has no children & was in a left subtree
●​ Remove X from a tree where X has no children & was in a right subtree
●​ Remove X from a tree where X was at the root & has only a right child
●​ Remove X from a tree where X was at the root & has only a left child
●​ Remove X from a tree where X was at the root & has two children

3.​ Finally, implement delete to make the tests pass.

Java

Problem 2: BSTs in Java

●​ Learning Goal: Implement BST functions in Java

●​ Prerequisites: Java basics & BST algorithms

●​ Submit: BinarySearchTree.java & text submission (Part A)

Starter Files and Introduction

1.​ The starter files are in the CS60 Github repository.

2.​ See the previous assignments for how to import these files into VSCode. Use hw8 as the

project name, and com.gradescope.hw8 as the package name.

Have a look at the starter files. Notice that BinarySearchTree implements the Map interface

and uses Generics for its keys and values. The Map interface provides some default methods
2
, so

a class that implements Map only needs to implement the abstract methods (click the

appropriate tab under “Method Summary”).

To help readability, we have broken up the code into sections, separated by labels, e.g.

//
// Query Operations
// Methods: isEmpty, size, height, containsKey, containsValue, get, getMinKey
//

The sections contain the following public methods:

●​ Querying the tree

○​ isEmpty

○​ size

○​ getHeight

○​ containsKey

○​ containsValue

○​ get

○​ getMinKey

●​ Modifying the tree

2
 These default methods are not covered in CS 60.

https://github.com/hmc-cs-dept/cs60
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html

○​ clear

○​ put

○​ putAll

○​ remove

●​ Helper methods

○​ inOrderKeys

○​ getAllKeysInOrder

●​ Not-yet-implemented methods: These methods are required by the Map interface and so

require a method stub. The details of the methods are not covered in CS 60 (but we are

happy to talk more in office hours).

○​ entrySet

○​ keySet

○​ values

A few notes:

●​ The instance variables have been shortened to root, left, and right. Be careful to

differentiate between the instance variable this.root and the local variable root in

helper methods. Helper methods should never access this.root.

●​ According to the Map interface, put returns the previous value associated with key, or

null if there was no existing mapping for key. (The videos defined put differently and

had it return the new value associated with key.)

Some guidelines:

●​ Your task in the rest of this problem is to implement the missing functionality in the

BinarySearchTree class, helpfully marked with TODO.

○​ Do not do it all now -- the sub-problems provide some extra context.

○​ Some TODOs require you to implement missing functionality. Other TODOs are

there to warn developers (you) that methods will not work until other

functionality is implemented.

○​ You do not have to implement the “not-yet-implemented” methods.

●​ Each method that you implement in Java corresponds to a procedure you implemented

in Racket. Use your Racket code to help out!

○​ As in Racket, you must use the recursive structure of the tree to implement the

missing BST methods. You definitely should not sort a list anywhere.

●​ Remember to test as you go!

Part A: Explain code in put

Carefully read the methods size(), containsKey(...), get(...), and put(...).

Java

Then, on Gradescope, complete the short-answer question briefly explaining (1-2

sentences) why we have a private helper version of put, and why we need to use it in the public

version of put.

public ValueType put(KeyType key, ValueType value)
private BSTNode put(KeyType key, ValueType value, BSTNode root)

Part B: Refactor the BSTNode constructor

Let us start off by refactoring the code, which

●​ Restructures existing code without changing its behavior

●​ Improves design, structure, and/or implementation while preserving functionality

Refactor the two-parameter BSTNode constructor to remove duplicated code.

Part C: Implement getMinKey

Familiarize yourself with the tests for getMinKey, then implement getMinKey to make these test

cases pass.

If you have to throw an exception, be sure to pass a helpful message to the Exception

constructor. Think of yourself as a user of the BinarySearchTree class. What message would

help you understand what went wrong when calling the getMinKey method? If you would like a

refresher, our LinkedList class in HW6 throws exceptions.

Note that exceptions are passed “up” method calls; that is, if method1 throws an exception, and

method2 calls method1, then method2 will throw the same exception. That means you should

only have to throw one exception in your implementation.

Part D: Implement addKeysToArrayList

Familiarize yourself with the tests for toString and containsValue. In the BinarySearchTree

class, note that these methods call a private helper method getAllKeysInOrder, which in turn

calls addKeysToArrayList.

https://en.wikipedia.org/wiki/Code_refactoring
http://www.youtube.com/watch?v=wcIRPqTR3Kc&feature=youtu.be

Implement addKeysToArrayList so that the test cases pass. The tests check toString,

containsValue, and put where the value for an existing key is replaced. You might find the

Java ArrayList API helpful, or you can search the internet for “example how to use Java

ArrayList”.

Part E: Implement remove

Familiarize yourself with the tests for remove, then implement remove to make these test cases

pass. We recommend that you consult the Racket and Java code for insert / put, and your

Racket code for delete. Remember that, in Java, we modify trees rather than build new ones.

Part F: Refactor to store and use an instance variable size

In our LinkedList class, we explicitly stored the size of the list in an instance variable mySize.

What are the trade-offs of storing the size explicitly?

Let us modify our BinarySearchTree to also explicitly store its size (number of nodes).

●​ Add an instance variable size. (Nifty! Java can differentiate between the instance

variable size and the method size().)

●​ Modify the method size() to return this.size instead of calculating the size.

●​ Update the size variable in the BinarySearchTree methods as appropriate so that all of

the test cases pass.

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://www.youtube.com/watch?v=wcIRPqTR3Kc&feature=youtu.be
http://www.youtube.com/watch?v=wcIRPqTR3Kc&feature=youtu.be

Problem 3: Big O with BSTs

Note: This part is its own assignment on Gradescope.

Assume N is the number of nodes in a binary search tree.

Notes

●​ Remember that when we use Big O, we care about asymptotic growth, i.e. what happens

as the input size tends to infinity. Therefore, for these questions, you might find it helpful

to imagine that N is a very big number.

●​ Refer to earlier problems for the BST functions as needed.

●​ All short answer questions can be successfully answered in a few sentences at most.

Analyzing BSTs using Racket

1.​ Explain why calling node-count on a BST takes O(N) steps and does not depend upon

the structure of the tree.

(define (node-count tree)​
 (cond [(emptyTree? tree) 0]​
 [(leaf? tree) 1]​
 [else (+ 1 (node-count (leftTree tree)) ​
 (node-count (rightTree tree)))]))

Describe a scenario in which calling find-min on a BST would take the given number of steps.

2.​ O(N) steps

3.​ O(1) steps

4.​ O(log2N) steps

Modifying the BinarySearchTree class in Java

5.​ Reread HW8, Problem 2, Part F. In this task, we decided to store the size of the tree in an

instance variable so that we would not need to traverse the tree each time we wanted to

retrieve its size. However, this design decision requires changing multiple other

methods. Explain why storing redundant information can be helpful, even if doing so

requires keeping variable values up-to-date in multiple other locations.​

6.​ How could we modify the BST class so that getMinKey takes O(1) steps? That is, what

instance variable(s) would we need to add, and what would we change about getMinKey?

What other methods would we need to change?

Inserting a node into a BST

Is there a scenario in which inserting a node into a BST would take the given number of steps? If

yes, describe the tree and node.

7.​ O(1) steps

8.​ O(log2N) steps

9.​ O(N) steps

10.​O(N
2

) steps

Rubric

Name Autograder Functionality Other Style Testing Total

1 Racket BSTs 16 0 3 5 10 34

2 Java BSTs 15 4 3 5 0 27

3
Big O with
BSTs 19 19

 37.5% 5% 32.5% 12.5% 12.5% 80

We will check for the following elements of bad style:

●​ Comments

○​ Complicated lines of code are not explained.

○​ Too many comments can be just as confusing for a reader as no comments at all.

We want to save inline comments for particularly tricky pieces of code and do not

need one for every line.

○​ [Racket] Missing a function-level comment, or the function-level comment is

missing a description of the function and its inputs and outputs.

○​ [Java] Missing a description of a non-private class / variable / method, or the

function-level comment does not conform to Javadoc style. (Exception: Test

methods)

●​ Naming

○​ Variable or method names are not helpful or do not follow language-specific

conventions.

●​ Formatting

○​ Function(s) are written in a way that makes it hard to read (e.g. lines too long so

text wraps, missing meaningful indentation).

○​ [Racket] Racket convention is to put all closing parentheses on the same line.

○​ [Java] Curly braces should follow style guide (opening braces same line as

function declaration / control structure, closing braces on own line except when

followed by `else` or `else if`, function and control structure bodies enclosed in

curly braces).

●​ Redundancy

○​ Function(s) have copy-pasted code rather than using helper functions.

○​ Function(s) explicitly returns `true`/`false` rather than returning predicates

directly, have redundant predicates rather than using `else`, or use unnecessary

`else` after `return` statements in `if` / `else` if blocks.

○​ Function(s) are overly complicated, e.g. include extra base case or other

unnecessary code.

○​ Avoid unused imports.

●​ Helper Functions

○​ Code is not “self-documenting”, e.g. does not use built-in / provided functions

where possible. (Exception is if the assignment instructions specifically forbid the

use of such functions.)

●​ Control Structures

○​ [Racket] Good style uses `if` over `cond` for single predicates (plus possibly an

`else` case), and uses `cond` over `if` to avoid nested `if`s (unless doing so

would repeat predicates).

○​ [Java] Good style uses `for` loops over `while` loops whenever possible.

●​ Class Design [Classes only]

○​ Classes / variables / methods have inappropriate access modifiers (`private` vs

`protected` vs `public`).

○​ Variables / methods have inappropriate `static` modifier and should belong to

an instance of the class (non-`static`) or the whole class (`static`).

○​ Variables / methods have inappropriate `final` modifier and should be

changeable (non-`final`) or unchangeable (`final`).

○​ Instance variables and methods should be referenced using the keyword `this`,

i.e. `this.fieldName` and `this.methodName(possibly arguments here)`.

○​ Class variables and methods should be referenced using the class name, i.e.

`ClassName.fieldName` or `ClassName.methodName(possibly arguments

here)`.

○​ Mark methods with `@Override` when (1) a class method overrides a superclass

method, (2) a class method implements an interface method, or (3) an interface

method respecifies a superinterface method.

●​ Tests

○​ Use appropriate flavors to test against booleans / test for equality. Racket

`check-true` / `check-false` / `check-equal`, Java: `assertTrue` / `assertFalse`

/ `assertEqual`.

○​ [Java] Put `@Test` on its own line before all test functions.

○​ It is generally better practice to test one functionality per test method! This

potentially means multiple tests for a single function. This approach isolates

exactly what functionality is failing without having to retest multiple times (and

helps prevent cases in which we fix one bug only to discover another).

●​ Miscellaneous

○​ Files contain startup notes such as “TODOs” or “delete this”.

○​ Files contain debugging statements, including unnecessary print statements or

output trace statements.

○​ Files contain student name(s). We grade everything anonymously in CS60 so that

things are graded as fairly as possible.

	Problem 1: BSTs in Racket
	Starter Files and Introduction
	Part A: Write test trees (and practice making BSTs)
	
	Part B: Test and implement height
	Part C: Test and implement find-min
	Part D: Test and implement in-order
	Part E: Explain the bug in insert
	Part F: Test and implement delete

	Problem 2: BSTs in Java
	Starter Files and Introduction
	Part A: Explain code in put
	Part B: Refactor the BSTNode constructor
	Part C: Implement getMinKey
	Part D: Implement addKeysToArrayList
	Part E: Implement remove
	Part F: Refactor to store and use an instance variable size

	
	Problem 3: Big O with BSTs
	
	
	Rubric

