Proposal for Object-Reuse
Documentation

The object-reuse section should be moved from the Data Types section and be combined with
the Passing Functions to Flink section in the DataSet programming guide.

For Reviewers:

Please check if these rules need to be reflected in code changes, i.e., do we need to
update code to make these rules correct.
Please list any required changes (including open JIRA issues below).

TODO:
- Update JavaDocs of InputFormat.nextRecord(reuse) and state rules for reuse object
- reuse may be modified
- reuse may be emitted
- reuse must not be read
- reuse must not be remembered across function call

Object Handling in Functions

Flink's runtime code exchanges data with user functions in form of Java objects. Functions
receive input objects from the runtime as method parameters and return output objects as
result. Because these objects can be accessed by user functions and runtime code, it is very
important to understand and follow the rules about how the user code may access, i.e., read
and modify, these objects.

User functions receive objects from the Flink runtime either as regular method parameters (like
a MapFunction) or through an lterable parameter (like a GroupReduceFunction). We refer to
objects that the runtime passes to a user function as "input objects". User functions can emit
objects to the Flink runtime either as a method return value (like a MapFunction) or through a
Collector (like a FlatMapFunction). We refer to objects which have been emitted by the user
function to the runtime as "output objects".

Flink's DataSet API features two modes that differ in how Flink's runtime code reuses and
creates new object instances. This behavior affects the guarantees and constraints for how user

https://ci.apache.org/projects/flink/flink-docs-release-0.10/apis/programming_guide.html#data-types
https://ci.apache.org/projects/flink/flink-docs-release-0.10/apis/programming_guide.html#passing-functions-to-flink

functions may interact with objects. The following sections define these rules and give coding
guidelines to write safe user function code.

Object-Reuse Disabled (DEFAULT)

By default, Flink operates in object-reuse disabled mode. This mode ensures that functions
always receive new input objects within a function call. The object-reuse disabled mode gives
better guarantees and is safer to use. However, it comes with a certain processing overhead
and might cause higher Java garbage collection activity.

Reading input objects Within a method call it is guaranteed that the values of input
objects do not change. This includes objects served by Iterables.
For example it is valid to collect input objects served by an
Iterable in a list or map.
Note: Objects may be modified after the method call is left.
Therefore, it is not safe to remember objects across function
calls.

Modifying input objects | You may modify input objects.

Emitting input objects You may emit input objects. Note, the value of an input object
may have changed after it was emitted. It is not safe to read an
input object after emission.

Reading output objects |You must treat output objects as modified, i.e., an object which
was given to a Collector or returned as method result might have
changed its value. It is not safe to read an output object.

Modifying output objects | You may modify an output object and emit it again.

Coding guidelines for object-reuse disabled:
e Do not remember and read input objects across method calls.
e Do not read objects after you emitted them.

Object-Reuse Enabled

In object-reuse mode, Flink's runtime will minimize the number of new object instantiations. This
improves the performance and reduces the Java garbage collection pressure. The object-reuse
enabled mode is activated by calling ExecutionConfig.enableObjectReuse().

Reading input objects Input objects received as regular method arguments are not

received as regular modified by the runtime until the method is left. Objects may be

method parameters modified after method call is left. Hence, it is not safe to
remember objects across function calls.

Reading input objects Input objects received from an lterable are only valid until the

received from an next() method is called. An lterable or Iterator may serve the

Iterable parameter same object instance several times. It is not safe to remember
input objects received from an lterable, e.g., by putting them in a
list or map.

Modifying input objects | You must not modify input objects, except for input objects of
MapFunction, FlatMapFunction, MapPartitionFunction,
GroupReduceFunction, GroupCombineFunction,
CoGroupFunction, and InputFormat.next(reuse).

Emitting input objects You must not emit input object, except for input objects of
MapFunction, FlatMapFunction, MapPartitionFunction,
GroupReduceFunction, GroupCombineFunction,
CoGroupFunction, and InputFormat.next(reuse).

Reading output objects | You must treat output objects as modified, i.e., an object which
was given to a Collector or returned as method result might have
changed its value. It is not safe to read an output object.

Modifying output objects | You may modify an output object and emit it again.

Coding guidelines for object-reuse enabled:

e Do not modify an input object, except for input objects of MapFunction, FlatMapFunction,
MapPartitionFunction, GroupReduceFunction, GroupCombineFunction,
CoGroupFunction, and InputFormat.next(reuse).

Do not remember input objects received from an Iterable.

Do not remember and read input objects across method calls.

To reduce object instantiations, you can always emit a dedicated output object which is
repeatedly modified but never read.

	Proposal for Object-Reuse Documentation
	For Reviewers:
	Object Handling in Functions
	Object-Reuse Disabled (DEFAULT)
	Object-Reuse Enabled

