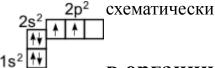
Основные положения теории химического строения А.М. Бутлерова

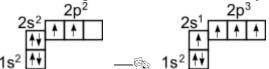

1) Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям.

Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной **структурной формулой** (формулой строения).

- 2) Химическое строение можно устанавливать химическими методами. В настоящее время используются также современные физические методы.
- 3) Свойства веществ зависят от их химического строения.
- 4) По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы предвидеть свойства.
- 5) Атомы и группы атомов в молекуле оказывают **взаимное влияние** друг на друга.

1) Строение атома углерода.

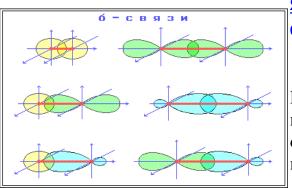
Электронное строение атома углерода изображается следующим образом: $1s^22s^22p^2$ или



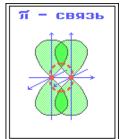
Углерод

в органических соединениях

четырехвалентен.


Это связано с тем, что при образовании ковалентной связи атом углерода переходит в возбужденное состояние, при котором электронная пара на 2s- орбитали разобщается и один электрон занимает вакантную p-орбиталь. Схематически:

В результате имеется уже не два, а четыре неспаренных электрона.


2) Сигма и пи-связи.

Перекрывание атомных орбиталей вдоль линии, связывающей

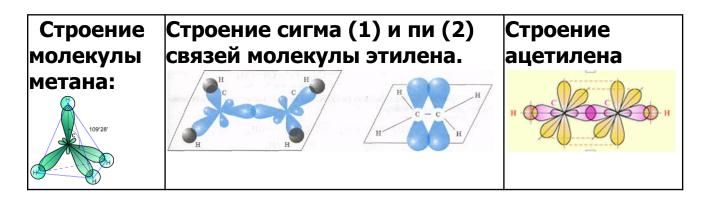
ядра атомов, приводит к образованию **σ-связей.**

Между двумя атомами в химической частице возможна **только одна σ-связь**. Все σ-связи обладают осевой симметрией относительно межъядерной оси.

При дополнительном перекрывании <u>атомных</u> орбиталей, перпендикулярных линии связи и параллельных друг другу, образуются п-связи.

В результате этого между атомами возникают кратные связи:

Одинарная	Двойная	Тройная (σ + π + π)
(σ)	(σ+π)	
C-C, C-H,	С=О и С=С	С≡С и С≡N
C-O		


3) Гибридизация.

Поскольку четыре электрона у атома углерода различны (2s- и 2p- электроны), то должны бы быть различны и связи, однако известно, что связи в молекуле метана равнозначны. Поэтому для объяснения пространственного строения органических молекул используют метод **гибридизации.**

- 1. При обобществлении <u>четырех орбиталей возбужденного атома</u> углерода (одной 2s- и трех 2p- орбиталей) образуются <u>четыре новых</u> равноценных <u>sp³- гибридных орбитали</u>, имеющие форму вытянутой гантели. Вследствие взаимного отталкивания **sp³** гибридные орбитали направлены в пространстве к вершинам <u>тетраэдра</u> и углы между ними равны **109°28'** (наиболее выгодное расположение). Такое состояние атома углерода называют первым валентным состоянием.
- 2. При **sp²-гибридизации смешиваются одна s- и две p-орбитали и образуются три гибридные орбитали**, оси которых расположены в одной плоскости и **направлены относительно друг друга под углом 120°.** Такое состояние атома углерода называют <u>вторым валентным состоянием</u>.
- 3. При **<u>sp-гибридизации</u>** сливаются одна s- и одна p-орбитали и образуются две гибридные орбитали, оси которых расположены на одной прямой и направлены в разные стороны от ядра рас сматриваемого атома углерода под углом 180°. Такое состояние атома углерода называют <u>третьим</u> валентным состоянием.

ТИПЫ ГИБРИДИЗАЦИИ в органических веществах.

Тип гибридизаци и sp	Геометрическая форма линейная	Угол между связями 180°	Примеры Алкины.	180°
sp ²	треугольная		Алкены, диены, ароматические соединения, карбонильные соединения, карбоксильная группа.	TO SEE SEE SEE SEE SEE SEE SEE SEE SEE SE
sp³	тетраэдрическа я	109,5°	Алканы, спирты.	

4) Изомерия.

Изомеры — вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов — разное строение.

Например, веществ с молекулярной формулой C_4H_{10} существует два: **н-бутан** (с линейным скелетом): $CH_3 - CH_2 - CH_2 - CH_3$ **и изо-бутан**, или 2-метилпропан: $CH_3 - CH - CH_3$

| *CH*₃ *Они являются изомерами.*

Изомерия бывает <u>структурная и пространственная</u>.

Структурная изомерия.

1. <u>Изомерия углеродного скелета</u> - обусловлена различным порядком связи между <u>атомами углерода</u>, образующими скелет молекулы (см. бутан и изобутан).

2. Изомерия положения кратной связи или

функциональной группы - обусловлена различным положением какой-либо реакционноспособной группы при одинаковом <u>углеродном</u> скелете молекул. Так, пропану соответствуют два изомерных спирта: $CH_3 - CH_2 - CH_2 - OH$ - пропанол-1 или н-пропиловый спирт и $CH_3 - CH - CH_3$

- пропанол-2 или изопропиловый спирт.

Изомерия положения кратной связи, например, в бутене-1 и бутене-2 $CH_3 - CH_2 - CH = CH_2$ - бутен-1 $CH_3 - CH = CH - CH_3$ - бутен-2.

3. **Межклассовая изомерия** — изомерия веществ, отонсящихся к разным классам органических соединений:

- алкены и циклоалканы (с С₃)
- алкины и диены (с С₃)

ÓН

- спирты и простые эфиры (с С2)
- альдегиды и кетоны (с С₃)
- одноосновные предельные карбоновые кислоты и сложные эфиры (с С2)

Пространственная изомерия - подразделяется на два вида:

геометрическую (или <u>иис-транс</u>-изомерию) и оптическую.

Геометрическая изомерия свойственна соединениям,

содержащим двойные связи или циклопропановое кольцо; она обусловлена невозможностью свободного вращения атомов вокруг двойной связи или в цикле. В этих случаях заместители могут быть расположены либо по одну сторону плоскости двойной связи или цикла (<u>иис</u>-положение), либо по разные стороны (<u>транс</u>-положение).

Понятия «цис» и «транс» обычно относят к **паре одинаковых** заместителей, а если все заместители разные, то условно к одной из пар.

(I) (II)

Оптическая изомерия свойственна молекулам органических веществ, не совмещающимся со своим зеркальным отображением (т.е. с молекулой, соответствующей этому зеркальному отображению). Чаще всего оптическая активность обусловлена наличием в молекуле асимметрического атома углерода, т.е. атома углерода, связанного с четырьмя различными заместителями. Примером может служить молочная кислота:

CH₃-C*HCOOH\
OH (асимметрический атом углерода отмечен звёздочкой).

Молекула молочной кислоты ни при каком перемещении в пространстве не может совпасть со своим зеркальным отображением. Эти две формы кислоты относятся друг к другу, как правая рука к левой, и называются оптическими антиподами (энантиомерами).

Физические и химические свойства оптических изомеров часто очень похожи, но они могут сильно отличаться по биологической активности, вкусу и запаху.

Классификация органических веществ.

Массиц	рикация органически Класс веществ	Характеристика	Общая	Суффикс ли
	класс веществ	ларактеристика		префикс
M	A	D	формула	префике
	Алканы	Все связи	C_nH_{2n+2}	
водо		одинарные		-«AH»
род				
Ы				
	Алкены	1 двойная	C_nH_{2n}	
		С=С связь		-«EH»
	Диены	2 двойные	C_nH_{2n-2}	
	[]	С=С связи		-«ДИЕН»
				' '
	Алкины	1 тройная связь	C _n H _{2n-2}	
	POIR MILE	C≡C	On: 12n-2	-«ИН»
				WII 1"
	Пиквознизи	32MKIN/T2G B	C _n H _{2n}	ЦИКЛО-
	Циклоалканы	Замкнутая в	C _n ⊓ _{2n}	цикото-
		КОЛЬЦО		
	<u> </u>	углеродная цепь		
	Арены	Содержат	C _n H _{2n-6}	
	(ароматические	бензольное		бензол
	углеводороды)	кольцо		
Кисло	Спирты		$C_nH_{2n+2}O$	
родсо		-OH		-«ОЛ»
держа			CH ₃ OH	
щие				
соеди				
нения				
	Фенолы	Бензольное	C _n H _{2n-6} O	
	CHOND	кольцо и в нём	On 12n-6	фенол
		- OH	C ₆ H ₅ OH	фенол
	A = 1 = 0 = 14 = 1 1		1	
	Альдегиды	-C=O	$C_nH_{2n}O$	
		<u> </u>		-«АЛЬ»
		Н	НСНО	
	Кетоны	– C –	$C_nH_{2n}O$	
				-«OH»
		0	C₃H ₆ O	
	Карбоновые	-C=O	$C_nH_{2n}O_2$	
	кислоты			овая
		ÖН	НСООН	кислота
	Сложные эфиры	R -C=0		
			$C_nH_{2n}O_2$	эфир
		OR OR	-11211-2	-
Азотс	Нитросоединения	R –NO ₂	$C_nH_{2n+1}NO_2$	нитро
	Пипросоединения	1102	On 12n+11102	
одерж				
ащие				
соеди				

нения				
	Амины	$-NH_2$	$C_nH_{2n+3}N$	
		или —NH- или — N — 	CH₃NH₂	амин
	Аминокислоты	Содержит -NH ₂ и		амино
		-COOH	$C_nH_{2n+1}NO_2$	-кислота

Номенклатура органических веществ

<u>Корни</u>

 C_1 – мет C_6 – гекс

 C_2 – эт C_7 – гепт

 C_3 – проп C_8 – окт

 C_4 – бут C_9 – нон

 C_5 – пент C_{10} – дек

Окончания

-ан – есть только одинарные связи С-С в молекуле

-ен – есть одна двойная связь С=С в молекуле

-ин – есть одна тройная связь С≡С в молекуле

-диен – есть две двойные связи С=С в молекуле

Старшинство функциональных групп в молекуле

	<u> </u>	1
Группа	Префикс	Суффикс (или окончание)
-COOH	Карбокси-	-овая кислота
-C=O	Формил-	-аль
H		
– C –	Оксо-	-он
0		
-OH	Гидрокси-	-ол (-овый спирт)
- NH ₂	Амино-	-амин
- NO ₂	Нитро-	-
C=C	-	-ен
C≡C	-	-ин
Галогены	Фтор-, хлор- и т.д.	-
Углеводородный	Алкил-	-
радикал		