An implicit, energy conserving and asymptotic preserving full-orbit time-integrator for particle-in-cell schemes*

Dr. Lee F. Ricketson and Luis Chacón (LANL)

Lawrence Livermore National Laboratory

While the gyrokinetic approximation has been extremely successful in accelerating simulations of strongly magnetized plasmas, there is increasing interest in full-orbit simulation in key contexts in which the gyrokinetic ordering may break down. Motivated by this, we present an implicit time-stepping scheme for charged particle motion that recovers the gyrokinetic limit when stepping over the gyration scale while converging to the exact, full-orbit dynamics in the small time-step limit. Such a scheme provides, for the first time, a uniform multiscale treatment of strongly and weakly magnetized regimes without the need to resolve gyration scales. The scheme is designed to function as a piece of recent implicit particle-in-cell schemes – most notably, it preserves the exact total energy conservation enjoyed by those schemes.

The development proceeds in two stages. First, the classical Crank-Nicolson scheme is modified to capture all guiding-center drift motions when stepping over the gyration scale – while still conserving energy - by introducing an effective force that induces the magnetic drift for large time-steps. Second, to capture finite Larmor radius (FLR) effects, we introduce alternating large and small time-steps to sample equispaced gyrophases in the time-stepping process. The numerical time-scales introduced by the new scheme are analyzed and resulting bounds on time-step are derived. These bounds still permit stepping over the gyration time-scale by large factors in strongly magnetized contexts.

We conclude with several numerical tests on single particle motion in complex field configurations. The ability to step over the gyration time-scale and recover correct long-time dynamics is demonstrated - even in field configurations featuring structure on the gyroradius scale - along with the scheme's energy conservation properties.

*Prepared by LLNL under Contract DE-AC52-07NA27344.