Partitioning the File System API

mek@chromium.org / Draft: 2021-06-17

Overview

Storage Partitioning

FileSystemURL changes
Sandboxed FS changes
n xed FS entr int

filesystem:// URL handling
Sandboxed File System file locations

Storage Buckets
Document History

Overview

This doc describes integrating the File System API with both storage partitioning and storage
buckets. Most of the code for the file system API lives in //storage/browser/file_system,
although some of the relevant entry points are in //content/browser/file system and
//content/browser/file_system_access.

Background/related documents

This design doc explains one particular aspect of the larger work needed to partition client side
storage APIs. More background information can be found in the following explainers and related
design documents:

https://github.com/wanderview/quota-storage-partitioning/blob/main/explainer.md
r Partitioning Desian
Storage Key Design

Storage Partitioning

https://crbug.com/1221308

FileSystemURL changes

This mostly comes down to migrating from Origin to Storage Key, although it is a bit more
complicated then other APIs due the File System APIs extensive dependencies on URLs as

https://github.com/wanderview/quota-storage-partitioning/blob/main/explainer.md
https://docs.google.com/document/u/1/d/1uroU_Uyub4dd3330YZF5-eiSumoYo2ABQLYXip__w9I/edit
https://docs.google.com/document/u/1/d/1xd6MXcUhfnZqIe5dt2CTyCn6gEZ7nOezAEWS0W9hwbQ/edit?resourcekey=0-Z5Xn1i5GJ4rit6_93QKIvA
https://crbug.com/1221308

internal identifiers for files. For most file system URLs (and FileSystemURL instances) the origin
of the URL doesn't matter, as most of these URLSs represent files or file systems that aren't tied
to any particular origin. | don't think we want to (or need to) change the serialization format of file
system URLSs (i.e. those will keep only containing an origin), but we will need to change from
url::0Origintoblink::StorageKey in storage::FileSystemURL. In order to accomplish
this, we will need to add a storage key to the methods that are used to create FileSystemURL
instances. Specifically FileSystemContext: :CrackURL will need to get a Storagekey
parameter in addition to the existing GURL parameter, and
FileSystemContext::CreateCrackedFileSystemURL will change its url: :0Origin parameter
to a StorageKey parameter.

With that FileSystemURL can then be updated to have a storage key getter in addition to the

existing origin getter, after which usage of the current origin getter can be modified to call the

storage key getter instead. FileSystemURL should verify/DCHECK that the passed in storage
key "matches" the origin that is parsed from the GURL.

Sandboxed FS changes

The majority of origin usage can remain as just using the origin of the storage key (in particular
the code in //chrome/browser/sync_file systemis chrome apps only, deprecated, and
does not need to care about non-first-party storage keys). The places that will need to be
changed to use the full storage key are all related to the sandboxed file system (generally files
called either obfuscated_file* or sandboxed_file*).

Besides changes to pass in the correct Storage Key when parsing URLSs,
FileSystemContext: :0OpenFileSystem (the method that is used to open a sandboxed file
system) will also need to be modified to accept a StorageKey rather than an "Origin.

Sandboxed FS entry points

Besides the filesystem:// URL handling described below, the other two entry points that
need to make sure they end up using the correct Storage Key are the legacy file system API (in
content/browser/file system/file system _manager_impl.cc) and the File System
Access API (in //content/browser/file_system_access).

For the legacy file system API this is somewhat complicated, as this code currently relies on the
renderer to pass in the correct origin to use, and we don't currently track what frame a request
came from. Ideally we'd know what frame a request came from, and use that to pass the correct
StorageKey to the OpenFileSystem and CrackURL methods throughout this code. We would
do this by adding a StorageKey as context to

mojo: :ReceiverSet<blink::mojom::FileSystemManager> receivers_. That means
adding a StorageKey parameter to FileSystemManagerImpl: :BindReceiver. For requests
initiated by a frame (i.e. RenderFrameHostImpl: :GetFileSystemManager) it is straightforward
to pass in the right storage key, but to support PPAPI this mojo interface is also exposed at the

process level, and there isn't really a good way to figure out the right storage key there (see also
https://crbug.com/873661).

For the File System Access API things should be somewhat simpler. The first place that needs
to be updated is the OpenFileSystem call in

FileSystemAccessManagerImpl: :GetSandboxedFileSystem. Here we will need to get the
StorageKey from the frame that tried to open the sandboxed file system. To make this possible
we should change FileSystemAccessEntryFactory: :BindingContext from storing a
url::0Origin to storing a blink: :StorageKey. The other place that will need to change is the
FileSystemAccessManagerImpl: :DeserializeHandle method (which is called by IndexedDB
when loading a handle from the database). Here too we'll need to change the origin to a storage
key and use that to create the cracked FileSystemURL.

filesystem:// URL handling

Adding a StorageKey parameter to the CrackURL method (and making sure the correct value is
passed in) should be enough to make sure that loading of filesystem:// URLs works
correctly in non-first party contexts. However the plumbing to get the correct storage key (in the
code in content/browser/file system/file system url loader factory.cc)is probably
going to be different from the other entry points.

Sandboxed File System file locations

Initially just leave alone, i.e. base location only on origin rather than full storage key. Once the
Sandboxed File System has also been integrated with Storage Buckets we'll end up using
storage buckets infra for what today SandboxOriginDatabase is used. As such there is not
much point in modifying SandboxOriginDatabase to support non-first-party storage keys.

Storage Buckets

TODO

e add GetSandboxedFileSystem method to StorageBucketHost mojo interface matchin the
one in FileSystemAccessManager (eventually probably remove it from the
FileSystemAccessManager interface).

e Add bucket id/name to OpenFileSystem methods.
Something with the code in ObfuscatedFileUtil::GetDirectoryForOrigin, and its callers.
Either plumb bucket ID (or name) through FileSystemURL, or perhaps "better" change
how the FSA API integrates with sandboxed FS? Not sure.. Also
SandboxFileSystemBackendDelegate::GetBaseDirectoryForOriginAndType.

Document History

https://crbug.com/873661

Date

Author

Description

2021-06-17

mek@

Initial draft, primarily talking about Storage Partitioning

	Partitioning the File System API
	Overview
	Background/related documents
	Storage Partitioning
	FileSystemURL changes
	Sandboxed FS changes
	Sandboxed FS entry points

	filesystem:// URL handling
	Sandboxed File System file locations

	Storage Buckets
	Document History

