CSE 341 | Section 7 Key
Language Implementation and Macros (Solutions)

1) Before we get too deep into evaluation, let’s practice in LBI
e Define the negation of 2022

(negate (const 2022))
e Define the addition between 340 and 1
(add (const 340) (const 1))

e Compare whether the constants 10 and 15 are equal and returns true if equal and false if
not equal

(eg-num (const 10) (const 15))

Implementing a Language for Arithmetic Expressions

(define (eval-exp e)
(cond [(const? e) e]
[(negate? e)
(let ([v (eval-exp (negate-el e))])
(1f (const? wv)
(const (- (const-int wv)))
(error "negate applied to non-number")))]
[(add? e)
(let ([vl (eval-exp (add-el e))]
[Vv2 (eval-exp (add-e2 e))])
(1f (and (const? vl) (const? v2))
(const (+ (const-int vl) (const-int v2)))
(error "add applied to non-number")))]
[(multiply? e)
(let ([vl (eval-exp (multiply-el e))]
[Vv2 (eval-exp (multiply-e2 e))])
(1f (and (const? vl1) (const? v2))
(const (* (const-int v1l) (const-int v2)))
(error "multiply applied to non-number")))]
[(bool? e) e]
[(egq-num? e)
(let ([vl (eval-exp (eg-num-el e))]
[v2 (eval-exp (eg-num-e2 e))])

(1f (and (const? vl1) (const? v2))

; creates (bool #t) or (bool #f)
(bool (= (const-int v1) (const-int v2)))

(error "eg-num applied to non-number")))]
[(if-then-else? e)
(let ([v-test (eval-exp (if-then-else-el e))])
(if (bool? v-test)
(1f (bool-b v-test)
(eval-exp (if-then-else-e2 e))
(eval-exp (if-then-else-e3 e)))
(error "if-then-else applied to non-boolean")))]
; not strictly necessary but helps debugging

[#t (error "eval-exp expected an exp")]))

Defining Macros in Racket for our Arithmetic Expression Language
(AEL)

1) (define (orelse el e2)

(if-then-else el (bool #t) e2))

2) (define (negative-square e)

(negate (multiply e e)))

3) (define (abs-eqg el e2)

(orelse (eg—num el e2) (eg-num (negate el) e2)))

Eval, quote, and quasiquote

2) A ;aquoted list is a list of symbols

3) b

5) error

6) Produces a nested multiplication of n x’s. For example, (powh 3) produces ' (* x

(* x x))

7) Returns a function which when called with a value x produces the equivalent of x"y.
Note that it does this without recursion thanks to the use of powh and
quasiquote/unquote

