
CSE 341 | Section 7 Key

Language Implementation and Macros (Solutions)

1) Before we get too deep into evaluation, let’s practice in LBI
● Define the negation of 2022

(negate (const 2022))

● Define the addition between 340 and 1

(add (const 340) (const 1))

● Compare whether the constants 10 and 15 are equal and returns true if equal and false if
not equal

(eq-num (const 10) (const 15))

Implementing a Language for Arithmetic Expressions
(define (eval-exp e)

(cond [(const? e) e]

 ​ [(negate? e)

(let ([v (eval-exp (negate-e1 e))])

(if (const? v)

 (const (- (const-int v)))

 (error "negate applied to non-number")))]

 [(add? e)

(let ([v1 (eval-exp (add-e1 e))]

 [v2 (eval-exp (add-e2 e))])

(if (and (const? v1) (const? v2))

 ​ (const (+ (const-int v1) (const-int v2)))

 (error "add applied to non-number")))]

 [(multiply? e)

(let ([v1 (eval-exp (multiply-e1 e))]

 [v2 (eval-exp (multiply-e2 e))])

 (if (and (const? v1) (const? v2))

 (const (* (const-int v1) (const-int v2)))

 (error "multiply applied to non-number")))]

 [(bool? e) e]

 [(eq-num? e)

(let ([v1 (eval-exp (eq-num-e1 e))]

 [v2 (eval-exp (eq-num-e2 e))])

 (if (and (const? v1) (const? v2))

; creates (bool #t) or (bool #f)
(bool (= (const-int v1) (const-int v2)))

(error "eq-num applied to non-number")))]

 [(if-then-else? e)

(let ([v-test (eval-exp (if-then-else-e1 e))])

(if (bool? v-test)

 (if (bool-b v-test)

 (eval-exp (if-then-else-e2 e))

 (eval-exp (if-then-else-e3 e)))

 (error "if-then-else applied to non-boolean")))]

 ; not strictly necessary but helps debugging

 [#t (error "eval-exp expected an exp")]))

Defining Macros in Racket for our Arithmetic Expression Language
(AEL)

1) (define (orelse e1 e2)

(if-then-else e1 (bool #t) e2))

2) (define (negative-square e)

(negate (multiply e e)))

3) (define (abs-eq e1 e2)

(orelse (eq-num e1 e2) (eq-num (negate e1) e2)))

Eval, quote, and quasiquote

1)​ a

2)​ A ; a quoted list is a list of symbols

3)​ b

4)​ c

5)​ error

6)​ Produces a nested multiplication of n x’s. For example, (powh 3) produces '(* x
(* x x))

7)​ Returns a function which when called with a value x produces the equivalent of x^y.
Note that it does this without recursion thanks to the use of powh and
quasiquote/unquote

