
Notes
1. The commands in this doc have been tested on Ubuntu 16.04 and 18.04.
2. The calibration is done using vicalib.The procedure follows this documentation.

Contents
Installing librealsense

Installing vicalib

Building Calibration Pattern

Retrieving Intrinsics

Calibrating Extrinsics of Two Cameras

Computing Transformations from Master to Others

Install realsense-ros

Visualizing Combined Point Cloud

Recording Data from All Cameras with rosbag

Extracting Color and Depth Images from rosbag

Installing apriltag_ros

https://github.com/arpg/vicalib
https://github.com/arpg/Documentation/blob/master/Calibration/README.md

Installing librealsense
Please refer to the official documentation, or run the following commands:

sudo apt-get install lsb-release software-properties-common

if [[$(lsb_release -rs) == "16.04"]]; then

sudo apt-get install apt-transport-https

fi

sudo apt-key adv --keyserver keys.gnupg.net --recv-key

F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver

hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE

sudo add-apt-repository "deb https://librealsense.intel.com/Debian/apt-repo

$(lsb_release -cs) main" -u

sudo apt-get install librealsense2-dkms

sudo apt-get install librealsense2-utils

sudo apt-get install librealsense2-dev

Installing vicalib
Please refer to the official documentation, or run the following commands:

Install dependencies.

sudo apt install \

wget \

cmake \

build-essential \

libeigen3-dev \

libgoogle-glog-dev \

libtinyxml2-dev \

libopencv-dev \

libprotobuf-dev \

protobuf-compiler \

libglew-dev \

freeglut3-dev

Create root directory.

mkdir -p $HOME/calibration

Install ceres-solver-1.14.0.

cd $HOME/calibration

wget http://ceres-solver.org/ceres-solver-1.14.0.tar.gz

https://github.com/IntelRealSense/librealsense/blob/master/doc/distribution_linux.md
https://github.com/arpg/vicalib

tar -zxvf ceres-solver-1.14.0.tar.gz

cd ceres-solver-1.14.0 && mkdir -p release && mkdir -p build && cd build

cmake .. \

-DCMAKE_BUILD_TYPE=RELEASE \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/ceres-solver-1.14.0/release

make -j8

make install

Create ARPG install directory.

cd $HOME/calibration

mkdir -p arpg && cd arpg

mkdir -p releases && mkdir -p builds

Update environment variables.

export PATH=$HOME/calibration/arpg/releases/bin${PATH:+:${PATH}}

export

LD_LIBRARY_PATH=$HOME/calibration/arpg/releases/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY

_PATH}}

export

LIBRARY_PATH=$HOME/calibration/arpg/releases/lib${LIBRARY_PATH:+:${LIBRARY_PATH}}

export

C_INCLUDE_PATH=$HOME/calibration/arpg/releases/include${C_INCLUDE_PATH:+:${C_INCLUD

E_PATH}}

export

CPLUS_INCLUDE_PATH=$HOME/calibration/arpg/releases/include${CPLUS_INCLUDE_PATH:+:${

CPLUS_INCLUDE_PATH}}

For later use, also add the following lines to $HOME/.bashrc.

export PATH=$HOME/calibration/arpg/releases/bin${PATH:+:${PATH}}

export

LD_LIBRARY_PATH=$HOME/calibration/arpg/releases/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY

_PATH}}

export

LIBRARY_PATH=$HOME/calibration/arpg/releases/lib${LIBRARY_PATH:+:${LIBRARY_PATH}}

export

C_INCLUDE_PATH=$HOME/calibration/arpg/releases/include${C_INCLUDE_PATH:+:${C_INCLUD

E_PATH}}

export

CPLUS_INCLUDE_PATH=$HOME/calibration/arpg/releases/include${CPLUS_INCLUDE_PATH:+:${

CPLUS_INCLUDE_PATH}}

Install Sophus.

cd $HOME/calibration/arpg

git clone git@github.com:arpg/Sophus.git

mkdir -p builds/Sophus && cd builds/Sophus

cmake ../../Sophus \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases

make -j8

make install

Install Calibu.

cd $HOME/calibration/arpg

git clone git@github.com:arpg/Calibu.git

if [[$(lsb_release -rs) == "16.04"]]; then

sed -i 's/std::cerr\ <<\ doc.ErrorStr()/\/\/\ std::cerr\ <<\ doc.ErrorStr()/g'

Calibu/src/cam/CameraXml.cpp

fi

mkdir -p builds/Calibu && cd builds/Calibu

cmake ../../Calibu \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases

make -j8

make install

Install CVars.

cd $HOME/calibration/arpg

git clone git@github.com:arpg/CVars.git

mkdir -p builds/CVars && cd builds/CVars

cmake ../../CVars \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases

make -j8

make install

Install HAL.

cd $HOME/calibration/arpg

git clone git@github.com:arpg/HAL.git

If you are using D455, you may need to run the following commands here to avoid

the error "object doesn't support option":

sed -i 's/driver->SetExposure/\/\/ driver->SetExposure/g'

HAL/HAL/Camera/Drivers/RealSense2/RealSense2Factory.cpp

sed -i 's/driver->SetGain/\/\/ driver->SetGain/g'

HAL/HAL/Camera/Drivers/RealSense2/RealSense2Factory.cpp

mkdir -p builds/HAL && cd builds/HAL

cmake ../../HAL \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases

make -j8

make install

Make sure you see that HAL is building the 'RealSense2' camera driver when

running the cmake command:

-- HAL: building 'AutoExposure' camera driver

-- HAL: building 'Cleave' abstract camera driver.

-- HAL: building 'Convert' abstract camera driver (using libopencv).

-- HAL: building 'DC1394' (firewire) camera driver.

-- HAL: building 'Debayer' camera driver (using libdc1394).

-- HAL: building 'Deinterlace' camera driver (using libdc1394).

-- HAL: building 'FileReader' camera driver.

-- HAL: building 'Join' abstract camera driver.

-- HAL: building 'OpenCV' camera driver.

-- HAL: building 'ProtoReader' camera driver.

-- HAL: building 'RealSense2' camera driver.

-- HAL: building 'Rectify' abstract camera driver.

-- HAL: building 'Split' abstract camera driver.

-- HAL: building 'Undistort' camera driver.

-- HAL: building 'V4L' camera driver.

If not, make sure you have installed librealsense.

Install Pangolin.

cd $HOME/calibration/arpg

git clone git@github.com:arpg/Pangolin.git

mkdir -p builds/Pangolin && cd builds/Pangolin

cmake ../../Pangolin \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases

make -j8

make install

Install vicalib.

cd $HOME/calibration/arpg

git clone https://github.com/arpg/vicalib

if [[$(lsb_release -rs) == "18.04"]]; then

sed -i 's/Eigen::VectorXd

params_(calibu::Rational6Camera<double>::NumParams);/Eigen::VectorXd

params_(10);/g' vicalib/src/vicalib-engine.cc && \

sed -i 's/Eigen::VectorXd

params_(calibu::KannalaBrandtCamera<double>::NumParams);/Eigen::VectorXd

params_(8);/g' vicalib/src/vicalib-engine.cc && \

sed -i 's/Eigen::VectorXd

params_(calibu::LinearCamera<double>::NumParams);/Eigen::VectorXd params_(4);/g'

vicalib/src/vicalib-engine.cc

fi

mkdir -p builds/vicalib && cd builds/vicalib

cmake ../../vicalib \

-DCMAKE_INSTALL_PREFIX=$HOME/calibration/arpg/releases \

-DCMAKE_PREFIX_PATH=$HOME/calibration/ceres-solver-1.14.0/release/lib/cmake/Ceres

make -j8

make install

Building Calibration Pattern
Please refer to the official documentation.

https://github.com/arpg/Documentation/blob/master/Calibration/README.md#building-a-calibration-pattern

We used a “medium” pattern in all our calibration processes. To create a pattern in pdf, run:

$HOME/calibration/arpg/releases/bin/vicalib \

-grid_preset medium \

-output_pattern_file pattern-medium.svg

convert \

-density 300 \

pattern-medium.svg pattern-medium.pdf

You need to print out the pattern and attach it on a planar and rigid surface.
● Make sure you print the calibration pattern in its actual size.
● We printed the pattern on a PVC board through FedEx’s poster printing service, and

mounted the PVC board on a bigger foam board.

Retrieving Intrinsics
We use vicalib to calibrate the extrinsics between two color cameras. When solving the
extrinsics, we fix the intrinsics of each camera. To get the intrinsics of each camera, one option
is to first use vicalib to calibrate each camera separately. However, we found that the
manufacturer’s calibration for intrinsics is sufficiently good, so we used those directly.

To retrieve the manufacturer's calibration, first install pyrealsense2:

pip install pyrealsense2

Next, connect a realsense, and run the following Python commands to retrieve the intrinsics,
provided the camera’s serial ID:

import pyrealsense2 as rs

serial = '836212060125' # change this

w = 1280

h = 720

cfg = rs.config()

cfg.enable_device(serial)

cfg.enable_stream(rs.stream.depth, w, h, rs.format.z16, 30)

cfg.enable_stream(rs.stream.color, w, h, rs.format.rgb8, 30)

pipe = rs.pipeline()

selection = pipe.start(cfg)

depth_stream = selection.get_stream(rs.stream.depth).as_video_stream_profile()

color_stream = selection.get_stream(rs.stream.color).as_video_stream_profile()

id = depth_stream.get_intrinsics()

ic = color_stream.get_intrinsics()

e = depth_stream.get_extrinsics_to(color_stream)

print("{:s}".format(serial))

print("depth:")

print(" intrinsics:", id)

print("color")

print(" intrinsics:", ic)

print("extrinsics (depth to color):")

print(" rotation:", e.rotation)

print(" translation:", e.translation)

print("")

This will print out the intrinsics of color and depth cameras of the realsense, and also their
extrinsics, for example:

color

intrinsics: width: 1280, height: 720, ppx: 622.822, ppy: 372.785, fx: 924.961,

fy: 924.387, model: Brown Conrady, coeffs: [0, 0, 0, 0, 0]

Next, create a new file $HOME/calibration/$ID.xml (use your serial id) and copy the following
lines into it. Make sure to change serialno and params according to your serial id and the
retrieved intrinsics of the color camera.

<rig>

<camera>

<camera_model name="" index="0" serialno="836212060125"

type="calibu_fu_fv_u0_v0_k1_k2_k3" version="0">

<width> 1280 </width>

<height> 720 </height>

<!-- Use RDF matrix, [right down forward], to define the coordinate

frame convention -->

<right> [1; 0; 0] </right>

<down> [0; 1; 0] </down>

<forward> [0; 0; 1] </forward>

<!-- Camera parameters ordered as per type name. -->

<params> [924.961; 924.387; 622.822; 372.785; 0.000; 0.000; 0.000]

</params>

</camera_model>

<pose>

<!-- Camera pose. World from Camera point transfer. 3x4 matrix, in the

RDF frame convention defined above -->

<T_wc> [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0] </T_wc>

</pose>

</camera>

</rig>

Finally, repeat this step to create the xml files for all your realsense cameras.

Calibrating Extrinsics of Two Cameras
Once you have all the xml files with intrinsics, we can do the extrinsics calibration now.

● In all our calibration processes, we calibrated a pair of realsenses each time (color
camera to color camera).

● Note that vicalib allows calibrating more than two cameras at once, but we found that
this will incur instability in optimization when the cameras viewpoints differ drastically.

● Since we have 8 cameras, positioned around the table, we do the calibration 8 times by
doing a pair each time, i.e. cam1-cam2, cam2-cam3, …, cam8-cam1.

To calibrate a pair of cameras, change the serial ids accordingly and run the following script:

export ID0=836212060125 # change this

export ID1=839512060362 # change this

$HOME/calibration/arpg/releases/bin/vicalib \

-grid_preset medium \

-frame_skip 4 \

-num_vicalib_frames 64 \

-output $HOME/calibration/$ID0-$ID1.xml \

-cam convert://realsense2:[id0=$ID0,id1=$ID1,size=1280x720,depth=0]// \

-nocalibrate_intrinsics \

-model_files $HOME/calibration/$ID0.xml,$HOME/calibration/$ID1.xml

This will launch vicalib and automatically capture 1 every 4 frames until capturing 64 frames,
and it will automatically run the optimization to solve the extrinsics. The out extrinsics file
$HOME/calibration/$ID0-$ID1.xml will look something like this:

<rig>

<camera>

<camera_model name="" index="0" serialno="836212060125"

type="calibu_fu_fv_u0_v0_k1_k2_k3" version="0">

<width> 1280 </width>

<height> 720 </height>

<!-- Use RDF matrix, [right down forward], to define the coordinate

frame convention -->

<right> [1; 0; 0] </right>

<down> [0; 1; 0] </down>

<forward> [0; 0; 1] </forward>

<!-- Camera parameters ordered as per type name. -->

<params> [924.961; 924.387; 622.822; 372.785; 0; 0; 0] </params>

</camera_model>

<pose>

<!-- Camera pose. World from Camera point transfer. 3x4 matrix, in the

RDF frame convention defined above -->

<T_wc> [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0] </T_wc>

</pose>

</camera>

<camera>

<camera_model name="" index="1" serialno="932122062010"

type="calibu_fu_fv_u0_v0_k1_k2_k3" version="0">

<width> 1280 </width>

<height> 720 </height>

<!-- Use RDF matrix, [right down forward], to define the coordinate

frame convention -->

<right> [1; 0; 0] </right>

<down> [0; 1; 0] </down>

<forward> [0; 0; 1] </forward>

<!-- Camera parameters ordered as per type name. -->

<params> [924.374; 923.815; 642.421; 367.242; 0; 0; 0] </params>

</camera_model>

<pose>

<!-- Camera pose. World from Camera point transfer. 3x4 matrix, in the

RDF frame convention defined above -->

<T_wc> [0.9943054, 0.09616721, 0.04592077, -0.1839901; -0.04086807,

0.7420496, -0.6690981, 0.5557837; -0.09842079, 0.6634111, 0.741754, 0.2430989]

</T_wc>

</pose>

</camera>

</rig>

The extrinsics is stored in <T_wc>. It is represented as a 3x4 transformation matrix, i.e. [R; t].

Here is a video of a calibration run.

We follow the guidelines below for calibration:
● Calibrate a pair of cameras each time.
● Make sure there are always some corners detected in each camera during the capture

period.
● For both cameras, cover as much pattern board region as possible.
● For both cameras, observe as many corners on the board as possible.
● For both cameras, keep the angle of the board as less tilted as possible.
● For calibrating color cameras, re-calibrate the pair until the final MSE is below 0.15.

Finally, repeat this step to get the xml files and <T_wc> until you can compute a transformation
from one camera to every other camera.

Computing Transformations from Master to Others
To verify the calibrated extrinsics, one way is to visualize the combined point cloud by
transforming the point cloud from each camera to a canonical coordinate frame. If the extrincs is
accurate, then the point clouds should stitch together in a nice way, like in this example.

First, you need to pick one camera and use its coordinate frame as the canonical frame. From
now on let’s refer to this camera as the “master”. The next step is to find the transformation from
the master to every other camera, using the extinsics you got previously.

Assuming we have 4 cameras (with serial IDs: 836212060125, 839512060362, 840412060917, and
841412060263), below is an example of the targeted output:

836212060125:

translation:

[-0.0356385, -0.5543582, 1.0280061]

rotation:

[[-0.8911318, -0.0030943, 0.4537341],

[0.4173740, 0.3866867, 0.8223578],

[-0.1779976, 0.9222059, -0.3432974]]

tf: -0.0356385 -0.5543582 1.0280061 2.7035728 0.1789511 1.9271598

839512060362:

translation:

[-0.4701657, -0.0288896, 0.7349084]

rotation:

[[0.2392589, -0.0230820, 0.9706814],

https://drive.google.com/open?id=1C1XDs4SeBWbI6ez3KwV2vOEK-GR418-8
https://drive.google.com/open?id=1ZY0sz4D9AwO9rurq8UepVgNDhtvvAd_5

[-0.7915438, -0.5836228, 0.1812260],

[0.5623287, -0.8116968, -0.1579074]]

tf: -0.4701657 -0.0288896 0.7349084 -1.2772595 -0.5971993 -1.7629362

840412060917:

translation:

[0.0000000, 0.0000000, 0.0000000]

rotation:

[[1.0000000, 0.0000000, 0.0000000],

[0.0000000, 1.0000000, 0.0000000],

[0.0000000, 0.0000000, 1.0000000]]

tf: 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

841412060263:

translation:

[0.3648854, -0.8780225, 0.6363378]

rotation:

[[-0.8711858, 0.3966662, -0.2892943],

[-0.2764904, 0.0905198, 0.9567441],

[0.4056949, 0.9134890, 0.0308149]]

tf: 0.3648854 -0.8780225 0.6363378 -2.8342750 -0.4177390 1.5370760

Note that the last line (“tf”) for each camera prints the transformation in the ROS tf format (x, y,
z, yaw, pitch, roll), and this is what we need for each camera.

You need to write a Python script to extract the tfs. In particular, for each camera other than the
master (which has identity transformation), you need to do two things:

1. Find the total transformation (in a 4x4 transformation matrix). Recall that in extrinsics
calibration we calibrate a pair of cameras each time and repeat in a circle, i.e.
cam1-cam2, cam2-cam3, …, cam8-cam1. Let’s say the master is cam1 and the target
now is cam4, so you are trying to find the transformation of cam1-cam4. This is done by
aggregating the pairwise transformation along the path from cam1 to cam4, i.e.
cam1-cam2, cam2-cam3, cam3-cam4. So first write a function to read the 3x4 matrices
<T_wc> from the extrinsics files, and then append the fourth row [0, 0, 0, 1] to each.
Then multiply the transformation matrices:

T14 = T12.dot(T23).dot(T34)

where T12, T23, T34 are numpy arrays of shape 4x4. Note that if you need T32 you can
get it by the computing inverse of T23.

T32 = np.linalg.inv(T23)

2. Convert the transformation from a 4x4 matrix to the tf representation:

from scipy.spatial.transform import Rotation as Rot

t = T14[:3, 3]

R = T14[:3, :3]

e = Rot.from_dcm(R).as_euler('ZYX').astype(np.float32)

print(' tf: {:10.7f} {:10.7f} {:10.7f} {:10.7f} {:10.7f} {:10.7f}'.format(

*t, *e))

You will need to scipy if you have not installed it:

pip install scipy

Once you have the tfs for all the cameras, you are now ready to visualize the point clouds using
ROS.

Install realsense-ros
We use realsense-ros for visualizing point clouds and recording. To install, please refer to the
official documentation, or run the following commands:

First, you need to install the ROS distribution:

sudo apt-get install lsb-release curl

if [[$(lsb_release -rs) == "16.04"]]; then

sudo apt-get install gnupg2

fi

sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'

curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | apt-key

add -

sudo apt-get update

if [[$(lsb_release -rs) == "16.04"]]; then

sudo apt-get install ros-kinetic-desktop-full

echo "source /opt/ros/kinetic/setup.bash" >> $HOME/.bashrc

fi

if [[$(lsb_release -rs) == "18.04"]]; then

sudo apt-get install ros-melodic-desktop-full

echo "source /opt/ros/melodic/setup.bash" >> $HOME/.bashrc

fi

source $HOME/.bashrc

https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros

Next, you need to install librealsense if you have not.

Finally, install realsense-ros:

if [[$(lsb_release -rs) == "16.04"]]; then

sudo apt-get install ros-kinetic-ddynamic-reconfigure

fi

if [[$(lsb_release -rs) == "18.04"]]; then

sudo apt-get install ros-melodic-ddynamic-reconfigure

fi

mkdir -p $HOME/catkin_ws/realsense-ros/src

cd $HOME/catkin_ws/realsense-ros/src

git clone https://github.com/IntelRealSense/realsense-ros.git

cd realsense-ros

git checkout `git tag | sort -V | grep -P "^2.\d+\.\d+" | tail -1`

cd ..

catkin_init_workspace

cd ..

catkin_make clean

catkin_make -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release

catkin_make install

echo "source $HOME/catkin_ws/realsense-ros/devel/setup.bash" >> $HOME/.bashrc

source $HOME/.bashrc

Visualizing Combined Point Cloud
A typical workflow with ROS will require launching multiple commands at once. You will need to
open multiple terminals for that. We use a tool called terminator to manage multiple terminal
windows. You can install it with:

sudo apt-get install terminator

Installing terminator will change the default terminal. To change it back:

sudo update-alternatives --config x-terminal-emulator

Select /usr/bin/gnome-terminal.wrapper

Once launched, you can create multiple terminal windows like below:

For now let’s assume you have 4 cameras. Extension to more than 4 cameras is
straightforward. First, set the environment variables in each window for serial ids and master
following the example below (after changing to your ids):

export ID1=836212060125 # change this

export ID2=839512060362 # change this

export ID3=840412060917 # change this

export ID4=841412060263 # change this

export MASTER=840412060917 # change this

Now, in window 1, launch roscore:

roscore

Next, in window 2 to 5, start the camera nodes for the realsenses.

window 2
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID1 camera:=$ID1

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 3

roslaunch realsense2_camera rs_camera.launch serial_no:=$ID2 camera:=$ID2

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 4
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID3 camera:=$ID3

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 5
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID4 camera:=$ID4

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

Finally, you need to set the transformations between the camera frame of master to each
camera using tf’s static_trasnform_publisher. Below shows an example of the transformations
obtained from this section:

836212060125:

tf: -0.0356385 -0.5543582 1.0280061 2.7035728 0.1789511 1.9271598

839512060362:

tf: -0.4701657 -0.0288896 0.7349084 -1.2772595 -0.5971993 -1.7629362

840412060917:

tf: 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

841412060263:

tf: 0.3648854 -0.8780225 0.6363378 -2.8342750 -0.4177390 1.5370760

Now, in window 6 to 9, enter the following commands (after changing the transformations to
yours):

window 6
rosrun tf static_transform_publisher -0.0356385 -0.5543582 1.0280061 2.7035728

0.1789511 1.9271598 ${MASTER}_color_optical_frame ${ID1}_color_optical_frame 30

window 7
rosrun tf static_transform_publisher -0.4701657 -0.0288896 0.7349084 -1.2772595

-0.5971993 -1.7629362 ${MASTER}_color_optical_frame ${ID2}_color_optical_frame 30

window 8
rosrun tf static_transform_publisher 0.0000000 0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 ${MASTER}_color_optical_frame world 30

window 9
rosrun tf static_transform_publisher 0.3648854 -0.8780225 0.6363378 -2.8342750

-0.4177390 1.5370760 ${MASTER}_color_optical_frame ${ID4}_color_optical_frame 30

After launching all the above commands, open rviz:

rviz

and make the following changes in the Displays panel:

1. Change Global Options->Fixed Frame to world.
2. Click the Add button and add rviz->DepthCloud.
3. Expand DepthCloud in the Display panel.
4. Change Depth Map Topic to /$ID1/aligned_depth_to_color/image_raw.
5. Change Color Image Topic to /$ID1/color/image_raw.
6. Repeat 2.-5. for $ID2, $ID3, and $ID4.

You should now see the combined point cloud in the 3D view panel, as shown previously in this
example.

As mentioned previously, the point clouds from each camera should stitch together in a
meaningful way. If not, then there should be something wrong in the calibration pipeline.

Recording Data from All Cameras with rosbag
Besides calibration, we also show how you can record RGB-D data simultaneously from all the
cameras. This can be done easily with ROS’s rosbag.

First, make sure all the ROS processes are killed and start a new terminator.

Again, let’s assume you have 4 cameras now. Extension to more than 4 cameras is again
straightforward. First, set the environment variables in each window for serial ids and master
following the example below (after changing to your ids):

export ID1=836212060125 # change this

export ID2=839512060362 # change this

export ID3=840412060917 # change this

https://drive.google.com/file/d/1ZY0sz4D9AwO9rurq8UepVgNDhtvvAd_5

export ID4=841412060263 # change this

Now, in window 1, launch roscore:

roscore

In our previous captures, we disabled auto exposure for rgb cameras. This can be done by
entering the following commands in one window:

rosparam set /$ID1/rgb_camera/enable_auto_exposure false

rosparam set /$ID2/rgb_camera/enable_auto_exposure false

rosparam set /$ID3/rgb_camera/enable_auto_exposure false

rosparam set /$ID4/rgb_camera/enable_auto_exposure false

Now launch the 4 cameras in window 2 to 5. This is the same as in visualizing point clouds.

window 2
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID1 camera:=$ID1

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 3
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID2 camera:=$ID2

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 4
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID3 camera:=$ID3

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

window 5
roslaunch realsense2_camera rs_camera.launch serial_no:=$ID4 camera:=$ID4

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

It is a good practice to check the frame rate of the color and depth streams for each camera
before recording. This can be done by the example commands below:

color

rostopic hz /$ID1/color/image_raw

depth
rostopic hz /$ID1/aligned_depth_to_color/image_raw

Since we launched the cameras with 30 FPS, you should see the average rate close to 30. For
example:

subscribed to [/836212060125/color/image_raw]

average rate: 29.661

min: 0.030s max: 0.039s std dev: 0.00146s window: 30

average rate: 29.703

min: 0.027s max: 0.039s std dev: 0.00197s window: 59

average rate: 29.724

min: 0.027s max: 0.039s std dev: 0.00181s window: 89

If the frame rate is much lower than expected, then there might be something wrong with the
cameras, or you are having bandwidth problems when streaming from all the cameras.

After verifying the frame rate, we can now do the recording. First, create a new directory for
storing the recorded data:

RECORD_DIR=$HOME/record

mkdir -p $RECORD_DIR

You can then record with the following command:

sleep 0.5 && rosbag record \

-a \

-x "(.*)compressed(.*)|(.*)theora(.*)" \

--duration=3 \

-O $RECORD_DIR/$(date +'%Y%m%d_%H%M%S').bag

This will start a recording after a 0.5 second wait, and record for a duration of 3 seconds. The
recorded data will be saved to a bag file named by the current datetime.

You can print the contents of a bag file with the following command:

rosbag info $BAG_FILE

You should see the color and depth topics from different cameras, for example:

topics: /836212060125/aligned_depth_to_color/camera_info

82 msgs : sensor_msgs/CameraInfo

/836212060125/aligned_depth_to_color/image_raw

74 msgs : sensor_msgs/Image

/836212060125/color/camera_info

82 msgs : sensor_msgs/CameraInfo

/836212060125/color/image_raw

74 msgs : sensor_msgs/Image

/836212060125/depth/camera_info

78 msgs : sensor_msgs/CameraInfo

/836212060125/depth/image_rect_raw

74 msgs : sensor_msgs/Image

.

.

.

/840412060917/aligned_depth_to_color/camera_info

81 msgs : sensor_msgs/CameraInfo

/840412060917/aligned_depth_to_color/image_raw

74 msgs : sensor_msgs/Image

/840412060917/color/camera_info

82 msgs : sensor_msgs/CameraInfo

/840412060917/color/image_raw

79 msgs : sensor_msgs/Image

/840412060917/depth/camera_info

79 msgs : sensor_msgs/CameraInfo

/840412060917/depth/image_rect_raw

75 msgs : sensor_msgs/Image

.

.

.

For a 3 second recording with 30 FPS, the number of messages for color and depth topics is
typically between 70 and 85.

Extracting Color and Depth Images from rosbag
Once you have recorded the data into a bag file, the next step is to extract the color and depth
images and save them into JPG and PNG. We also want to synchronize the images from
different cameras. All of this can be done with ROS’s Python API. Since the ROS distributions
for Ubuntu 16.04 and 18.04 only support Python 2, you should use Python 2 to run the python
scripts below.

First, use rosbag’s Python API to read a bag file named bag_file:

import rosbag

http://wiki.ros.org/rosbag/Code%20API#Python_API

bag = rosbag.Bag(bag_file)

Next, we can retrieve a list of topics in the bag file. See rosbag Cookbook for more information.
Note that we only need the topics for color and aligned depth images from each camera:

topics = bag.get_type_and_topic_info()

t = topics[1].keys()

t = [

k for k in t if any([

x in k

for x in ('/color/image_raw', '/aligned_depth_to_color/image_raw')

])

]

serials = [x.split('/')[1] for x in t]

serials = sorted(list(set(serials)))

topic_list = [

'/' + s + x

for s in serials

for x in ('/color/image_raw', '/aligned_depth_to_color/image_raw')

]

Given the list of topics, we want to synchronize their messages and save the messages of each
topic to a variable. We use ROS’s ApproximateTimeSynchronizer for synchronization:

import message_filters

synced_msgs = [[] for t in topic_list]

fs = [message_filters.SimpleFilter() for _ in topic_list]

ts = message_filters.ApproximateTimeSynchronizer(fs, queue_size=10, slop=0.1)

def callback(*msgs):

for i, msg in enumerate(msgs):

synced_msgs[i].append(msg)

ts.registerCallback(callback)

for topic, msg, t in bag.read_messages(topics=topic_list):

fs[topic_list.index(topic)].signalMessage(msg)

Finally, we will create a new directory and save the synchronized image messages from each
camera to JPG and PNG files. This is done with cv_bridge:

from cv_bridge import CvBridge, CvBridgeError

import os

import cv2

http://wiki.ros.org/rosbag/Cookbook#Python
http://wiki.ros.org/message_filters#ApproximateTime_Policy
http://wiki.ros.org/cv_bridge

assert args.file[-4:] == ".bag"

save_root = args.file[:-4]

save_paths = [

save_root + '/' + s + x

for s in serials

for x in ("/color_{:06d}.jpg", "/aligned_depth_to_color_{:06d}.png")

]

for s in serials:

d = save_root + '/' + s

if not os.path.exists(d):

os.makedirs(d)

bridge = CvBridge()

for t, msgs in enumerate(synced_msgs):

print("Saving topic: " + topic_list[t])

for i, data in enumerate(msgs):

print("{:06d}/{:06d}".format(i + 1, len(msgs)))

save_file = os.path.join(save_paths[t].format(i))

try:

cv_image = bridge.imgmsg_to_cv2(data, data.encoding)

except CvBridgeError as e:

print(e)

if data.encoding == 'rgb8':

cv2.imwrite(save_file, cv_image[:, :, ::-1])

elif data.encoding == '16UC1':

cv2.imwrite(save_file, cv_image)

else:

assert 0

Once done, you will have a new directory in the same folder as the bag file with the following
structure:

bag_file_name/

├── serial_id_1/

├── aligned_depth_to_color_000000.png

├── aligned_depth_to_color_000001.png

├── ...

├── color_000000.jpg

├── color_000001.jpg

└── ...

├── serial_id_2/

└── ...

Reference: this script.

https://gist.github.com/zxf8665905/2d09d25da823b0f7390cab83c64d631a

Installing apriltag_ros
Besides calibrating the extrinsics between the cameras, sometimes it is also helpful to get the
transformation from the camera coordinate frame to a certain coordinate frame in the world, e.g.
a corner of the table. AprilTag can be used for this. We use a ROS wrapper called apriltag_ros.
To install, please refer to the official documentation, or run the following commands:

First, you need to install realsense-ros if you have not.

Next, install apriltag_ros:

mkdir -p $HOME/catkin_ws/apriltag_ros/src

cd $HOME/catkin_ws/apriltag_ros/src

git clone https://github.com/AprilRobotics/apriltag.git

git clone https://github.com/AprilRobotics/apriltag_ros.git

cd ..

catkin_make_isolated

echo "source $HOME/catkin_ws/apriltag_ros/devel/setup.bash" >> $HOME/.bashrc

source $HOME/.bashrc

To test AprilTag, you need to generate tags and print them out. To avoid generating tags
yourself, you can also use some pre-generated tags online, such as from here. For now, let’s
test with a pre-generated tag. Download the pre-generated tags here and print out the first page
(april.tag.Tag36h11, id = 0). Make sure you print the tag in its actual size.

In order to detect the tag, we need to set the type of the tag we printed out before launching
apriltag_ros.

1. Open src/apriltag_ros/apriltag_ros/config/settings.yaml and make sure
tag_family is set to 'tag36h11' (this should be default after cloning):

tag_family: 'tag36h11' # options: tagStandard52h13, tagStandard41h12,

tag36h11, tag25h9, tag16h5, tagCustom48h12, tagCircle21h7, tagCircle49h12

2. Open src/apriltag_ros/apriltag_ros/config/tags.yaml and add {id: 0, size:

0.172}, to standalone_tags:

standalone_tags:

[

{id: 0, size: 0.172},

https://april.eecs.umich.edu/software/apriltag.html
https://github.com/AprilRobotics/apriltag_ros
https://github.com/AprilRobotics/apriltag_ros
https://github.com/AprilRobotics/apriltag-imgs/issues/4
https://github.com/AprilRobotics/apriltag-imgs/files/3680870/AprilTag-tag36h11.pdf

]

Now we are ready to demo tag detection with the camera feed from RealSense. Make sure all
the ROS processes are killed and start a new terminator. And make sure you have one
RealSense connected.

In window 1, launch roscore:

roscore

In window 2, launch the camera (after setting $ID1):

roslaunch realsense2_camera rs_camera.launch serial_no:=$ID1 camera:=$ID1

depth_width:=640 depth_height:=480 color_width:=640 color_height:=480 depth_fps:=30

color_fps:=30 align_depth:=true

In window 3, launch apriltag_ros using the feed of the color camera:

roslaunch apriltag_ros continuous_detection.launch camera_name:=/$ID1/color

image_topic:=image_raw camera_frame:=${ID1}_color_optical_frame

After launching all the above commands, open rviz:

rviz

and make the following changes in the Display panel:

1. Change Global Options->Fixed Frame from map to ${ID1}_link.
2. Click the Add button and add rviz->DepthCloud.
3. Expand DepthCloud in the Display panel.
4. Change Depth Map Topic to /$ID1/aligned_depth_to_color/image_raw.
5. Change Color Image Topic to /$ID1/color/image_raw.
6. Click the Add button and add rviz->TF.

You should now see the point cloud from the camera and the tf transform tree in the 3D view
panel. If you move the camera view to cover the tag, you should see the detected TF of the tag,
like in this example.

You can also print out the detected tag pose in real time using the following command:

https://drive.google.com/file/d/1-Fp5x_F4iMmu5Md1piyVp64Gz2_I30ZB

rostopic echo /tag_detections

This will print out messages like below:

header:

seq: 19439

stamp:

secs: 1625269964

nsecs: 607464552

frame_id: "105322250873_color_optical_frame"

detections:

-

id: [0]

size: [0.172]

pose:

header:

seq: 29736

stamp:

secs: 1625269964

nsecs: 607464552

frame_id: "105322250873_color_optical_frame"

pose:

pose:

position:

x: -0.0240318327555

y: -0.242946308493

z: 0.576730116777

orientation:

x: 0.998853860836

y: -0.034052332356

z: 0.016474073164

w: 0.0293258975643

covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

.

.

.

