IDC Desktops and SlicerOnDemand

Background

There has been a background project for a few years to explore on-demand virtual desktops in
the cloud' to facilitate the use of traditional GPU-enabled workstation applications like 3D Slicer
on virtual machines. These VMs are both "close" to the data in a networking sense to provide
fast access, but also can be configured with hardware to meet the demands of a given
visualization or processing task. Machines with up to 4 TB of RAM or up to 640 GB of GPU
memory are currently available but require cloud computing expertise to make use of. Our goal
has been to streamline the process so that users can more easily get access to these
resources.

So far we have succeeded in creating GCP bootable images that come with a full linux desktop
pre-installed that exposes a remote desktop server. We have shown that we can get from
button press to a fully provisioned and running application in just under 90 seconds and
demonstrated that the remote desktop performance is suitable for tasks such as volume
rendering and interactive segmentation. In addition, these machines support installation of GPU
accelerated machine learning tools such as PyTorch and MONAL.

We would like to make this service available so that scientists who are used to working in
desktop environments can more easily transition to cloud computing and make use of IDC?
resources.

Current Status

The current bootable images are based on Ubuntu 20.04 with customized systemd scripts to
bring up X11, the mwm window manager, x11vnc, and noVNC. Slicer is also started
automatically. The boot images are generated by scripts®, so exact behavior can be configured
and images created in about 10 minutes. We also created a prototype of a one-click launcher*
that uses the gcloud installation on a local computer to launch a VM with this image and then
open a browser tab to the remote desktop when the instance has booted. The browser is
pointed to a localhost port which has been tunneled through gcloud ssh so that access to the
machine is strongly controlled via standard Google security.

In practice, the VM is very usable as a workstation that can run a variety of analysis tools and
the user can either keep it running or delete it depending on their needs.

' https://projectweek.na-mic.org/PW35 2021 Virtual/Projects/SlicerOnDemand/

2 .

3 https://github.com/pieper/SlicerMachines



https://github.com/pieper/SlicerOnDemand
https://github.com/pieper/SlicerMachines
https://portal.imaging.datacommons.cancer.gov/
https://projectweek.na-mic.org/PW35_2021_Virtual/Projects/SlicerOnDemand/

Desired State

There are some improvements we'd like to see in this process that fall into two broad categories
related to launching and managing the VMs and then the user experience with the VM desktop
itself.

Launching and Managing

It would be much easier for users if users didn't need to install the gcloud SDK on their local
machine. Even for PhD-level computer scientists this is a barrier due to the many steps
involved and it would be more friendly to provide this functionality via a web app. Most of the
the gcloud functions in the current prototype (launching VM, monitor status, etc) are also
available to authenticated users via the JavaScript API available in the browser, so it should be
possible with a statically hosted web app to provide a console to launch, connect/reconnect,
stop, start, reboot, and terminate one or more VMs. The exception is the ssh tunnel, since the
web app cannot control local ports. One alternative would be to install and configure Chrome
Remote Desktop on the VM to allow secured access. Another alternative would be to use the
API to configure GCP's Identity Aware Proxy (IAP) such that only the user can access the
noVNC endpoint on the VM. A complexity of the IAP approach is that it can only be used with
https endpoints so we would need to automate the creation of trusted certificates. Also in
previous experiments IAP was just noticeably slower than gcloud ssh for remote desktops.
Chrome Remote Desktop is comparable to the noVNC + gcloud ssh method in terms of
performance and security.

We should also consider how this environment can help scientists make use of IDC data. One
idea is to pre-populate a disk image with the contents of an IDC cohort or to make an organized
directory hierarchy of symlinks to DICOM files in the IDC buckets exposed via gcsfuse.

The idea of the web app for managing these VMs would be to give the users the functionality
they need without the complexity of the GCP console. Research and design work will be
required to determine the right trade-offs between flexibility and complexity in terms of
CPU/GPU types, memory and disk sizes, etc. Probably a few "standard" options like small,
medium, and large could handle a lot of use cases.

VM Desktop User Experience

The current prototype exposes a workable, but minimalist desktop environment with the Motif
Window Manager, mwm, a decades-old tool that lacks modern conveniences and appearance.
The reason for this is that in order to boot directly to the application with vnc enabled and other
window managers weren't working correctly when started with systemd. These issues are no
doubt solvable by a sysadmin or advanced user with deep familiarity with the technologies
involved (Xorg, gdm, Unity, etc).



A related task is to determine a set of useful utilities to be pre-installed on the boot images to
facilitate cancer research with IDC data. These could include 3D Slicer with extensions like
SlicerRadiomics and SlicerJupyter pre-installed, but also possibly Chrome/Firefox, R Studio,
gcsfuse, or bioinformatics tools.

Further Considerations

The current prototype is focused on GCP, but it would be desirable to stick to a technology stack
that can also be applied in AWS and Azure, and also possibly deployed on-premises. Also we
have focused on Linux desktops, but some users might prefer Windows, which is also available
as a cloud desktop option. In fact, AWS offers App Streaming and Microsoft is said to be
releasing Windows 365 cloud hosted desktops so we should investigate the extent to which
those technologies might address similar issues as the work proposed here.



