

ChainSpoT

Supervised by:​

Assoc. Prof: Sahar Abd El-Rahman

Dr: Heba-Allah Adly

Team Members:

o​ Ahmed Hesham Salah

o​ Aya Mohamed Amin

o​ Doaa Abusriaa Abd-Elatty

o​ Sara Ashraf Elsayed

Page 1 of 117

o​ Mohamed Yasser Mohamed

Page 2 of 117

ACKNOWLEDGMENT

We thank Allah for completing the project and we hope that it will be useful.

 we would like to express our deep gratitude to Assoc Prof Dr. Sahar Abd

El-Rahman and Dr.Heba-Allah Adly, our project supervisors, for their patient

guidance, enthusiastic encouragement, and useful critiques of this research work.

We have been extremely lucky to have supervisors who cared so much about our

work, and who responded to our questions and queries so promptly.

 we would like to express our very great appreciation to Dr. Abdallah Saad for his

valuable and constructive suggestions during the planning and development of

this project. His willingness to give his time so generously has been very much

appreciated.

Also, we would like to thank the college for providing us with laboratories that are

equipped with the required tools such as computers and the Internet.

We would like to thank the Discussion committee for their time and efforts.

Finally, we would like to thank our families for their unconditional support.

Page 3 of 117

Table Of Content

Acknowledgment​ 2

Table Of Content​ 3

List Of Figures​ 6

Abstract​ 8

Chapter One: Introduction​ 9

1.1​ Problem Statement​ 10

1.2 Objectives​ 10

1.3 Stakeholders​ 11

1.4 Project Scope​ 11

1.5 constraints​ 12

1.6 Cost​ 12

1.7 Project Outcomes​ 12

Chapter Two: Background and Related Work​ 13

2.1 Related Work​ 14

2.2 Wireless Network Modes​ 15

2.2.1 Infrastructure Mode​ 16

2.2.2 Ad-Hoc Mode​ 17

2.2.3 Infrastructure Mode Vs Ad-Hoc Mode.​ 18

2.3​ Chain Start​ 19

2.4​ Static algorithm to determine the best node to connect​20

Page 4 of 117

2.5​ Dynamic Algorithm​ 21

2.6​ Operating system dependency​ 22

2.6.1 Wi-Fi Network Profile​ 22

2.6.2 “Netsh” Command Using CMD​ 22

2.6.3 Windows API using PowerShell​ 23

2.6.4 Subprocess Python Library​ 24

2.6.5 PyQt Python Library​ 25

2.7​ Performance of the network​ 25

2.7.1 Network performance monitoring:​ 25

2.7.2​ Network Performance Concept​ 25

2.7.3 Network Performance Parameters​ 26

Chapter Three: Analysis and Methods​ 29

3.1​ Windows CMD​ 30

3.2​ Windows API Using PowerShell​ 31

3.3​ Network Operator Tethering Manager Methods​ 34

3.4​ Subprocess Python Library​ 35

3.5​ PyQt Python Library​ 36

3.6​ The connection of the devices forward and reverse​ 37

3.6.1​ Windows Routing Table.​ 38

3.6.2​ The Sockets & Threading​ 46

3.6.3​ GNS3​ 51

Chapter Four: Implementation​ 54

4.1​ Tutorial​ 55

Page 5 of 117

4.2​ Master or client​ 56

4.3​ Master​ 56

4.4​ Chat application​ 59

4.5​ Tree Structure​ 64

4.6​ Client​ 67

4.7​ Client connect​ 69

4.7.1​ Sorting function​ 69

4.7.2​ Connecting to the best node​ 70

Chapter Five: Testing​ 72

5.1​ Tutorial​ 73

5.2​ Master Or Client​ 73

5.3​ Master Test​ 74

5.4​ Client Test​ 76

5.5 Client Connect Test​ 76

5.6 The Service of The Application​ 78

5.6.1 chat application​ 78

5.6.2 tree draw​ 79

5.6.3​ Statistics​ 80

5.7 Test Case​ 81

5.8 Result​ 88

Chapter Six: Conclusion and Future Work​ 89

6.1​ Conclusion​ 90

Page 6 of 117

6.2​ Future Work​ 91

7​ References:​ 92

Appendix A.​ Routing Table​ 93

Appendix B.​ Loopback Interface​ 94

Appendix C.​ Sockets​ 98

Appendix D.​ Gns3​ 99

List Of Figures

Figure 1 Infrastructure Network[8]​ 16

Figure 2 Ad-hoc Network[8]​ 17

Figure 3 comparison between Ad-Hoc and Infrastructure connection [9]​ 18

Figure 4 Example of ChainSpoT Network [9]​ 19

Figure 5 WPA2-Personal Profile Sample​ 22

Figure 6 netsh wlan Commands​ 23

Figure 7 NetworkOperatorTetheringManger Methods​ 24

Figure 8 Subprocess example​ 36

Figure 9 First Test Case [9]​ 39

Figure 10 Routing Table for Device 1​ 40

Figure 11 Routing Table for Device 2​ 41

Figure 12 Routing Table for Device 3​ 42

Figure 13 Routing Table for Device 4​ 43

Figure 14 Second Use Case [9]​ 44

Figure 15 Grandchildren use case [9]​ 45

Figure 16 Simple Example [9]​ 46

Page 7 of 117

Figure 17 Code of The Simple Example 1​ 47

Figure 18 Code of The Simple Example 2​ 47

Figure 19 Code of The Simple Example 3​ 48

Figure 20 Decentralized Use Case[9]​ 49

Figure 21 Centralized Use Case [9]​ 50

Figure 22 GNS3 Network​ 51

Figure 23 Router Configuration​ 51

Figure 24 Maser or Client Form​ 54

Figure 25 Master Form​ 54

Figure 26 Client Form​ 65

Figure 27 Client Connect Form​ 67

Figure 28 Tutorial Form​ 71

Figure 29 Tree Draw Example​ 81

Figure 30 Statistics Draw Example​ 82

Figure 31 Chat Example​ 85

Figure 32 Routing Table Parameters​ 91

Figure 33 Install loopback interface 1​ 93

Figure 34 Install loopback interface 2​ 93

Figure 35 Install loopback interface 3​ 94

Figure 36 Install loopback interface 4​ 94

Figure 37 Install loopback interface 5​ 95

Figure 38 Loopback Interface Adapter in Network Connections​ 95

Figure 39 GNS3 Setup Wizard​ 98

Figure 40 GNS3 Choose Server​ 99

Figure 41 Loopback Static IP​ 99

Figure 42 Add Virtual Network to Virtual Network Editor​ 100

Page 8 of 117

Figure 43 Add Bridged Loopback Interface to VMnet0​ 101

Figure 44 Add Bridged Network Adapter to GNS3 VM​ 102

Figure 45 Configuration the Cloud with The New Interface​ 102

Figure 46 Connect the Router with The New Interface​ 103

Page 9 of 117

Abstract

We aim to make people's lives better. If you do not have network infrastructure
hardware, do not worry. You can start your new network without it and
communicate with your friends or colleagues. You can chat or share files without
any constraints. Imagine a building without network infrastructure (no cables, no
switches, no hubs, no access points, and no routers). It is more common in
developing countries. A Windows Hotspot will be a good solution for this issue.
We will develop the hotspot option using wireless network technology in our
application ChainSpoT. However, Windows Hotspot has limitations, as it can only
communicate with 8 devices. We aim to develop software that manages Wi-Fi and
hotspots on your device to make a chain of hotspots that allows you to chat, share
files, voice streams, video streams, and even play video games with each other.
All these are locally, so there is no need to have a portable access point or switch
in your pocket every time you go. No need for the internet, no device limitation,
and no coverage area limitation. Just open the ChainSpoT software and click
"start". ChainSpoT will do everything. connects you to the best node, opens your
hotspot to make another tree branch, opens the server (if you are the maser),
connects to the server (if you are the client), and reconnects you to the chain if
your connection drops.​

​
​

Keywords: ChainSpoT, Network, Infrastructure networks, Chat application, Wi-Fi,
Loopback Interface, Hotspot.

Page 10 of 117

Chapter One: Introduction

Page 11 of 117

1.1​Problem Statement

The main problem is that we did not find an easy method for local communication
without an infrastructure network, or something that does not cost me and has no
limitations so, we are targeting solutions to different problems for different sectors
of usage:

The most critical sector is the military sector:​
Military departments are mostly concerned with upgrading their security system to
provide ultimate security for their data and information. But in the military, there
are a lot of wide areas. No access point in the entire world can cover all this area
alone. Our project increases coverage area based on clients of the network. Military
soldiers move a lot to different sites and military tents. They carry a lot of
equipment already. Current Network solutions are permanent and require a lot of
equipment so it will be better for moving soldiers to eliminate network equipment.​
​

But some other sectors, like small companies and small offices, are looking for
reducing the cost of intermediary devices used in current networks.​
​

For users, it is much effort to share big-size data. It is very costly and takes much
time with the internet, but if these users are in the same wireless coverage area
(Room, House, Café, School, College, …etc.) it is more convenient to share this
data locally, but they need network equipment to make this happen fast and free.​
For isolated sites without internet coverage, there is no way to communicate.

1.2 Objectives

●​ Aiming to connect the laptops and computers without an

intermediary device to facilitate communication, sharing,

and provision of intermediate devices for members of the

same group.

●​ Creating a chain of hotspots and desktop applications to

manage them.

●​ Making a Program for chatting and sharing files as a proof of

concept.

Page 12 of 117

●​ Monitoring performance and measuring its parameters

empirically by testing it in the Lab, and enhancing their

parameters to achieve a good performance, much more

user capacity, and making more coverage area for the

network.

●​ Securing data delivery.

 1.3 Stakeholders

●​ Residents of the building who do not have network infrastructure.

●​ Soldiers in the camps and places without network coverage.

●​ Small companies and offices to save network infrastructure costs.

●​ People who need to send large files locally but have limited internet access.

●​ People who need to chat locally and secured.

1.4 Project Scope

We will create an algorithm to reimplement the Ad-Hoc concept using

infrastructure and create a chatting and sharing files program as proof of

concept.​

Our focus will be on Windows 10 laptop devices and desktop computers with

wireless cards only. Since we do not have too many laptops in the early stage, we

will use desktop computers in our faculty lab and buy external wireless adapters

beside our laptops.

Page 13 of 117

1.5 constraints

●​ ChainSpoT tree will grow until we hit a level where connection became slow

and cannot grow further.

●​ Network setup is required every time you use the network.

●​ Network setups take a long time.

●​ Connection quality depends on the quality of wireless network cards in the

network.

​

Because of all those reasons, ChainSpoT networks are a temporary solution

and cannot be a permanent solution.

1.6 Cost

●​ The biggest advantage of our project is it is almost free and costless if users

have a laptop only.

●​ For desktop users, it costs about 10$ for every device to buy and install an

external network adapter.

1.7 Project Outcomes

 At the end of the project, any user can start a free wide range of

networks without being constrained by the number of clients, then

use this network for chatting, sharing files …etc. without any

infrastructure just by their laptops or desktop computers (with

wireless adapter) just by ChainSpoT software at any time. No need

for user experience in the network. The software will be very

Page 14 of 117

user-friendly. Just by a few steps the network starts, and the client

connects to it, we will make a tutorial for the user to teach him how

to use our program. And for the superuser, we will make him a

statistics section for the network statistics to help him in

troubleshooting the network.

Chapter Two: Background and Related Work

Page 15 of 117

2.1 Related Work

The current solutions that we have found in our research:​
 If you want to make two or more devices communicate with each other, you need
to Buy switches and cables, Connect the switch with your devices and configure it.​
 If you want the devices to go online, you need to buy a router and configure it.​
 If you want to drop cables, you can buy an access point too. This is coastal,
complex, and hard but efficient and Practical in most cases, but these are
permanent solutions. What if you want a temporary or portable solution? This can
happen by using the mobile hotspot feature in most smartphones or laptops today,
but it has its limitations.​
​

SHARE it (an example of a hotspot local sharing application) [6].

SHARE is an extremely popular file-sharing application designed to

freely transfer several types of data between Android, iOS, macOS,

and Windows. If you plan to transfer important data from one device

to another, then SHARE is a good choice. However, this application

also has some limitations.​

SHARE is mainly used to transfer data and files between different

devices.​

How does it work?​

It tries to start the hotspot from the sender or receiver and the other
one connects to this hotspot. If one of them can’t start or connect to a
hotspot, it uses Bluetooth instead of a hotspot (connection will be
slower for sure), Then the sender sends the data (files/photos) to the
receiver.

Disadvantages

●​ It is a peer-to-peer application, that allows only transferring files

between two hosts only.

●​ The supported data types are relatively small.

Page 16 of 117

●​ The transfer process can get stuck sometimes.

We will try to overcome these disadvantages

●​ ChainSpoT is a broadcast application, that allows transferring files and
chatting between all hosts in the network.

●​ The supported data types are relatively small.

●​ The transfer process can get stuck sometimes.

2.2 Wireless Network Modes

PCs are connected to your network with physical cabling. Now it is

time to cut the cord and look at one of the most exciting

developments in network technology, wireless networking [5].

Instead of a physical set of wires running among networked PCs, servers, printers,
or what-have-you, a wireless network uses radio waves to enable these devices to
communicate with each other. This offers great promise to the people who've spent
time pulling cable up through ceiling spaces and down behind walls, but wireless
networking is more than just a convenient solution sometimes, it could be the only
networking solution that works in some cases, for example, imagine having clients
whose offices are housed in a building designated as a historic landmark which
You can't go punching holes in it to make a room for network cable runs, so
Wireless networking will be the only valid solution.

Wireless networks operate at the same OSI layers and use the same protocols as
wired networks. The thing that differs is the type of media-radio waves instead of
cables-and the methods for accessing the media.

A hotspot is a physical location where users can connect to the Internet, using
Wi-Fi, via a wireless local area network (WLAN) using a router connected to an
Internet service provider. Most people call these locations "Wi-Fi hotspots" or
"Wi-Fi connections".​
​

A hotspot can be found in either a private or public location, such as a coffee shop,
hotel, airport, or even an airline. While many public hotspots offer free wireless
access to an open network, others require payment.

Page 17 of 117

 2.2.1 Infrastructure Mode

Figure 1 Infrastructure Network[8]

As shown in Figure1 above, Infrastructure mode is a wireless network

framework that has a central WLAN access point/router at the heart

of the network. Wireless devices communicate with each other in

infrastructure mode via a WLAN access point/router.

It is the most popular mode to connect devices like laptops or smartphones to
another network on the internet or intranet. By associating every client with an
access point and this access point is connected in turn to another network so the
client can send and receive packets of data through the access point. This mode is
Server and clients (Master and slave) concept, which needs a server to serve the
whole group.

Wireless networks running in infrastructure mode use one or more WAPs to
connect the wireless network nodes centrally. This configuration is like the star

Page 18 of 117

topology of a wired network. Infrastructure mode is also used to connect wireless
and wired network segments. If you plan to set up a wireless network for many
PCs, or you need to have centralized control over the wireless network, then
infrastructure mode is what you need.

A Basic Service Set is a single WAP that serves a certain area (BSS). This service
area can be extended by adding more access points. This is called, appropriately, an
Extended Service Set (ESS).

Infrastructure mode wireless networks require a little more planning than ad hoc
mode networks, such as where to locate the WAPs to offer appropriate coverage,
and they provide a stable setting for permanent wireless network deployments. The
infrastructure mode is better suited to business networks, or networks that need to
share dedicated resources such as Internet connections and centralized databases.

 2.2.2 Ad-Hoc Mode

Figure 2 Ad-hoc Network[8]

As shown in Figure2 above, The Ad-hoc mode refers to a wireless
network structure where devices can communicate directly with each
other. It is a built network without the use of existing infrastructure
(no cables, no switches, no hubs, no access point, and no routers).

Page 19 of 117

It is not popular as the infrastructure mode. It's developed by associating a group of
computers and can send frames of data to each other directly. No access point is
used. No need for a server to serve the whole group. Everyone in the group acts
like a server and a client at the same time.

It is used for setting up the on-the-fly network, it is not important to have
expensive equipment. The ad hoc network does not have a single failure point.

When there is a need for direct sharing of data or other files with another computer
then ad hoc networks serve useful even when Wi-Fi network access is not there.

Deployment of wireless ad hoc networks is fast, and results are also produced
similarly in case of an emergency where the suitability of wireless networks is
there. Ad Hoc wireless network could be used for sharing the internet connection
of the computer with another computer.

 2.2.2.1 setting up an Ad-hoc network

 automatically selects a Class B IP address for any node not connected to a
DHCP server or hard coded to an IP address. Finally, ensure that the File and
Printer Sharing service is running on all nodes.

 2.2.3 Infrastructure Mode Vs Ad-Hoc Mode.

Page 20 of 117

Configuring NICs for ad hoc mode networking requires you to address four things:
SSID, IP addresses, channel, and sharing. You must set the NICs to function in ad
hoc mode. Each wireless node must use the same network name (SSID). Also, no
two nodes can use the same IP address-although this is unlikely with modern
versions of Windows and the Automatic Private IP Addressing (APIPA) feature
that.

Figure 3 comparison between Ad-Hoc and Infrastructure connection [9]

​

The foremost common way our wireless devices are connected is through the
infrastructure method of wireless networking. This implies our multiple devices are
all connected to one access point, usually a wireless router to speak with the
network. An ad-hoc wireless network is different in the sense that there is no
universal access point needed and the nodes can freely communicate with one
another directly. A node is often described as any single device that may transfer
and receive data to and from other devices nearby.​
This method of networking can often be called 'peer to peer' since we are
transferring local files between nodes without an infrastructure connection. But the
accidental is employed in embedded systems only, rarely employed in Linux but
not in windows 10 OS, which makes our project one amongst its kind.

2.3​Chain Start

Page 21 of 117

Our project is used to build a network of laptops but without any infrastructure

devices (access point, switch, router, ...) Or using wires. Our project aims to

implement one ad-hoc network using several infrastructure networks as shown in

Figure 4.

This is developed when a master (user) begins the network, opens a hotspot, and
can connect with clients, the user joins an existing network, up to eight and each
client, in turn, can connect with another eight clients and so on as a tree as shown
in the figure.

Figure 4 Example of ChainSpoT Network [9]

Master can start hotspot network, no infrastructure devices needed, just by his
laptop or desktop computer (with wireless adapter).

The client can join the network which the master has created. The wide range
network continues to grow (more users mean more coverage range) without being
constrained by the number of clients.

Users (client or master) can send and receive text messages and files.

2.4​Static algorithm to determine the best node to connect

 We use a power shell to control the windows hotspot. The names of hotpots
(nodes) are used to carry information for newcomers and to organize the

Page 22 of 117

connections among the network nodes. Lack of information for the users before
entering the network. the newcomer user who wants to join the network won't have
any information about the network or know the number of the connected branches
or leaves he just sees the power and SSID: To solve this problem the program will
share some information through the name of the node (SSID). And from this
information, it will choose the best node to connect.

Room ID: If we have multiple ChainSpoT networks in the same place. Room ID
will distinguish between them.

Device ID: Unique number for every device.

Hub ID: Describe the depth (number of nodes) between host and master.

Our priority is Hub ID, less hub depth means better connection also considering
Signal Power do not be less than a certain limit.

If Hub ID is equal for 2 nodes Our second priority is Signal Power.

For the same Hub ID, bigger power means a better connection.

We apply the static algorithm to reduce the number of nodes which we must
change in the Dynamic algorithm.

2.5​Dynamic Algorithm

The dynamic algorithm does whatever the static algorithm cannot do Because
newcomer in the static algorithm just see the power of surrounding networks and
their SSID (we put some information in SSID for the helping static algorithm) but
this is not enough.

After the ChainSpoT network is built by the static algorithm. Nodes communicate
with each other to make the balance of the ChainSpoT tree. After making a static
algorithm as shown in the previous figure.

Every device collects and sends its information to the master. Then master
restructures the tree to make the tree balance.

Page 23 of 117

For example, a laptop with a hotspot name “1.19.2” if its power according to
“1.1.1” is good enough. It will disconnect from its parent “1.8.1” and connect to
the new parent “1.1.1” device to make tree balance. We will not make a 100% tree
balance because this will cause a high waiting time for all the users. So, we trade
between tree balance and waiting time.

2.6​ Operating system dependency

2.6.1 Wi-Fi Network Profile

To connect to any Wi-Fi network, you must have a profile for this network. As

shown in Figure 5, this profile contains Wi-Fi SSID, password, connection mode,

connection type, protection type, and other properties.

Page 24 of 117

Figure 5 WPA2-Personal Profile Sample

2.6.2 “Netsh” Command Using CMD

Netsh is a command-line scripting utility (which can run from CMD or

PowerShell) that allows you to display or modify the network configuration of a

computer that is currently running. Netsh commands can be run by typing

commands at the netsh prompt and they can be used in batch files or scripts.

Remote computers and the local computer can be configured by using netsh

commands.

Netsh also provides a scripting feature that allows you to run a group of

commands in batch mode against a specified computer. With netsh, you can save

a configuration script in a text file for archival purposes or to help you configure

other computers.

You can also use the netsh command-line tool in the command prompt to view,

export, import, delete wireless network profiles, recover the network security key,

delete wireless network profiles, connect to the Wi-Fi network, and open and

manage hosted network and other network management utility. But netsh starts

Page 25 of 117

to become a legacy. New hardware network cards no longer support open

hotspots with a net. Figure 6 shows some netsh wlan commands.

Figure 6 netsh wlan Commands

2.6.3 Windows API using PowerShell

 New laptops and PCs have new network cards which do not support open

hotspots with nets. So, we need to use windows API to open hotspots using

PowerShell.

NetworkOperatorTetheringManager Class: This interface exposes the methods

and properties used to control and configure tethering capabilities; these

methods are shown in Figure 7.

Page 26 of 117

Figure 7 NetworkOperatorTetheringManger Methods

2.6.4 Subprocess Python Library

The subprocess module provides a consistent interface for creating and working

with additional processes. It defines one class, Popen, and a few wrapper

functions that use that class. The constructor for Popen takes arguments to set up

the new process so the parent can communicate with it via pipes. It provides all

the functionality of the other modules and functions it replaces, and more. The

API is consistent for all uses, and many of the extra steps of overhead needed

Page 27 of 117

(such as closing extra file descriptors and ensuring the pipes are closed) are

“built-in” instead of being handled by the application code separately.

2.6.5 PyQt Python Library

PyQt is a Python binding for Qt, which is a set of C++ libraries and
development tools that include platform-independent abstractions for Graphical
User Interfaces (GUI), as well as networking, threads, and regular expressions,
SQL databases, SVG, OpenGL, XML, and many other powerful features.

We will design our program layout using Qt Designer. Then we will convert it to
PyQt code.

2.7​Performance of the network

2.7.1 Network performance monitoring:

 It is end-to-end network monitoring of the end-user experience. It differs from
traditional monitoring because performance is monitored from the end-user
perspective, and is measured between two points in the network, for example:

1)​ The performance of a user who works in the office, and the
application they use in the company’s data center.

2)​ The performance between two offices in a network.
3)​ The performance between the head office and the Internet.
4)​ The performance between your users and the cloud.
5)​ The performance between the master and the clients and the clients

with each other in the tree (the case in our project).

2.7.2​ Network Performance Concept

 It is the analysis and review of collective network statistics, to

define the quality of services offered by the underlying computer

network that is primarily measured from an end-user perspective.

Page 28 of 117

More simply, network performance refers to the analysis and review

of network performance as seen by end-users [7].

There are three important concepts:

●​ Analysis and Review: Before you can analyze and compare

network performance measurement data over time, you must

first measure key network metrics associated with network

performance and collect a history of the data you have

measured.

●​ Measuring Performance: Network Performance refers to the

quality of the network. The quality will be different depending

on where in the network the measurements are taken

(Distance between Master and Clients), The quality will also

vary depending on when the measurements are taken. For

example, your network may be performing well early during the

workday with fewer users online and begin to degrade later in

the day when more users connect to the network.

●​ The End User: The end-user experience is the most important

factor when measuring performance. But just hearing about

the user experience is not enough! With the right monitoring

tools, we can turn the user's experience into measurable

metrics, and translate those measurements into areas for

improvement.

2.7.3 Network Performance Parameters

The most important parameters that Performance is Depending on

are:

2.7.3.1​ Latency

 In any network, latency refers to the time it takes for data to reach

its destination across the network. You usually measure network

latency as a round trip delay, in milliseconds, considering the time it

Page 29 of 117

takes for the data to get to its destination and then back again to its

source.

Measuring the round-trip delay for network latency is important

because a computer that uses a TCP/IP network sends a limited

amount of data to its destination and then waits for an

acknowledgment that the data has reached its destination before

sending any more. Therefore, this round-trip delay has a significant

impact on network performance.

2.7.3.2​ Throughput

 Throughput refers to the amount of data passing through the

network from point A to point B in a determined amount of time.

When referring to communication networks, throughput is the rate of

data that was successfully delivered over a communication channel.

Measuring network throughput is usually done in bits per second

(bit/s or bps).

"Internet Connection Speed" or "Internet Connection Bandwidth" is a

general term used by internet companies to sell you high-speed

internet, but is used by default to mean throughput, which is the

actual rate of packet delivery over a specific medium.

That is why the best way to learn how to measure network

throughput is to use Speed Tests.

How does Latency Affect Throughput?

When learning how to monitor latency, it is important to note that

latency also affects the maximum throughput of a data transmission,

which is how much data can be transmitted from point A to point B at

each time.

But the reason that latency affects throughput is because of TCP

(Transmission Control Protocol). TCP makes sure all data packets reach

their destination successfully and in the right order. It also requires

Page 30 of 117

that only a certain amount of data is transmitted before waiting for an

acknowledgment.

2.7.3.3​ Packet Loss

Packet loss refers to the number of data packets that were

successfully sent out from one point in a network but were dropped

during data transmission and never reached their destination.

Packet loss needs to be measured to know how many packets are

being dropped across the network to be able to take steps to ensure

that data can be transmitted as it should be. Knowing how to measure

packet loss provides a metric for determining good or poor network

performance.

2.7.3.4​ User Quality of Experience

All the metrics we mentioned, in addition to user requirements and

user perceptions, play a role in determining the perceived

performance of your network.

Each metric on its own gives you an idea of how your infrastructure is

performing, but you need to look at all these factors to give a true

measurement of network performance.

The best way to measure and quantify user experience is by

measuring User Quality of Experience (QoE). QoE allows you to

measure performance from the end-user perspective and is the

perception of the user of the effectiveness and quality of the system

or service. Users base their opinions about the network on their

perception of QoE.

Page 31 of 117

Finally, there are many parameters we can take into consideration for

measuring performance and we mentioned some of these

parameters, but we found that it is so difficult to measure these

parameters theoretically by Equations, so we are forced to measure

these parameters empirically by testing it in the Lab.

Page 32 of 117

Chapter Three: Analysis and Methods

Page 33 of 117

In this chapter, we are going to discuss the main methods we will use to

implement our project (ChainSpoT) and present the test cases on which our work

is based.

3.1​ Windows CMD

We will use CMD to control the Wi-Fi interface and Windows 10 Netsh Wlan

Commands for Wi-Fi Management:

We can view, troubleshoot, and configure virtually every network adapter on a

local or remote computer using these commands.

We can use the Netsh WLAN command also to generate reports, import, export,

and delete wireless profiles from our devices Laptops, Pcs).

Commands we will use and their usage:

1- netsh WLAN show profiles

 Views wireless network profiles.

2-netsh WLAN export profile name="profile name" key=clear folder=c:\

 Exports wireless profile.

3-netsh wlan add profile filename="path_and_filename.xml" interface="interface_name"

Imports the wireless profile from the XML file.

4-netsh wlan set profileorder name=[profile name]interface=[interface_name] priority=1

 Sets a wireless network’s priority.

5-netsh WLAN set profile parameters name=[profilename]

connectionmode=manual

 Automatically stops the connection to a wireless network.

6-netsh WLAN set hostednetwork mode=allow
ssid=[your_virtual_network_name] key=[your_network_password]

Page 34 of 117

Configures the Wireless Hosted Network.

7-netsh WLAN start hostednetwork

Enables the Wireless Hosted Network.

8-netsh WLAN stop hostednetwork

Disables the Wireless Hosted Network.

9-netsh WLAN show hostednetwork

Retrieves the Wireless Hosted Network details.

10- netsh Wlan

With netsh WLAN help you can list all available options as you see in figure 6.

3.2​ Windows API Using PowerShell

New laptops and PCs have new network cards which do not support open hotspots
with nets so, we need to use windows API to open hotspots using PowerShell [11].

To manage hotspot using PowerShell, at first the following function is created.

Add-Type -AssemblyName System.Runtime.WindowsRuntime

$asTaskGeneric = ([System.WindowsRuntimeSystemExtensions].GetMethods() | ?
{ $_.Name -eq 'AsTask' -and $_.GetParameters().Count -eq 1 -and
$_.GetParameters()[0].ParameterType.Name -eq 'IAsyncOperation`1' })[0]

Function Await($WinRtTask, $ResultType) {

 $asTask = $asTaskGeneric.MakeGenericMethod($ResultType)

 $netTask = $asTask.Invoke($null, @($WinRtTask))

 $netTask.Wait(-1) | Out-Null

 $netTask.Result }

Function AwaitAction($WinRtAction) {

Page 35 of 117

 $asTask = ([System.WindowsRuntimeSystemExtensions].GetMethods() | ? {
$_.Name -eq 'AsTask' -and $_.GetParameters().Count -eq 1 -and
!$_.IsGenericMethod })[0]

 $netTask = $asTask.Invoke($null, @($WinRtAction))

 $netTask.Wait(-1) | Out-Null }

$connectionProfile =
[Windows.Networking.Connectivity.NetworkInformation,Windows.Networking.C
onnectivity,ContentType=WindowsRuntime]::GetInternetConnectionProfile()

$tetheringManager =
[Windows.Networking.NetworkOperators.NetworkOperatorTetheringManager,Win
dows.Networking.NetworkOperators,ContentType=WindowsRuntime]::CreateFro
mConnectionProfile($connectionProfile)

Then the function can be called to accomplish any purpose to manage the hotspot

To open hotspot:

Await($tetheringManager.StartTetheringAsync())
([Windows.Networking.NetworkOperators.NetworkOperatorTetheringOperationRe
sult])

To close hotspot:

AwaitAction($tetheringManager.ConfigureAccessPointAsync($accessPointConfig
uration))
([Windows.Networking.NetworkOperators.NetworkOperatorTetheringOperationRe
sult])

To change name and password

$accessPointConfiguration =
$tetheringManager.GetCurrentAccessPointConfiguration()

$accessPointConfiguration.Ssid = <Your SSID>

$accessPointConfiguration.Passphrase = <8 to 32 characters>

Page 36 of 117

During work, we have noticed that we are not able to open a hotspot when there is
no connection with the internet and the above PowerShell function is only valid to
manage a hotspot when there the s internet.

After a lot of research and not reaching any solution on any source or website.

We returned to the used PowerShell function we got from reference (9) to manage
the hotspot.

By Checking the code accurately, we have noticed the function

GetInternetConnectionProfile()

that returns the currently connected network profile with the internet and returns
null if there is no internet so due to this function, we cannot open the hotspot or
manage it on a device not connected to the internet.

we changed this function to another function

GetConnectionProfiles()

Which returns all the saved network profiles regardless of the existence of the
internet and by looping around them with a for loop in the PowerShell we can get
an object with only one saved network profile that enables us to manage the
hotspot.

So, the function changed to the following:

[Windows.System.UserProfile.LockScreen,Windows.System.UserProfile,ContentT
ype=WindowsRuntime] | Out-Null

Add-Type -AssemblyName System.Runtime.WindowsRuntime

$asTaskGeneric =
([System.WindowsRuntimeSystemExtensions].GetMethods()|?{$.Name-eq'AsTask
'-and $_.GetParameters().Count-eq 1 -and
$_.GetParameters()[0].ParameterType.Name -eq 'IAsyncOperation`1' })[0]

Function Await($WinRtTask, $ResultType) {

 $asTask = $asTaskGeneric.MakeGenericMethod($ResultType)

Page 37 of 117

 $netTask = $asTask.Invoke($null, @($WinRtTask))

 $netTask.Wait(-1) | Out-Null

 $netTask.Result }

Function AwaitAction($WinRtAction) {

 $asTask=
([System.WindowsRuntimeSystemExtensions].GetMethods()|?{$.Name-eq
'AsTask' -and $_.GetParameters().Count -eq 1 -and !$_.IsGenericMethod })[0]

 $netTask = $asTask.Invoke($null, @($WinRtAction))

 $netTask.Wait(-1) | Out-Null }

$connectionProfile=
[Windows.Networking.Connectivity.NetworkInformation,Windows.Networking.C
onnectivity,ContentType=WindowsRuntime]::GetConnectionProfiles()

foreach($i in $connectionProfile){

$randomProfile =$i }

$tetheringManager=
[Windows.Networking.NetworkOperators.NetworkOperatorTetheringManager,Win
dows.Networking.NetworkOperators,ContentType=WindowsRuntime]::CreateFro
mConnectionProfile($randomProfile)

3.3​ Network Operator Tethering Manager Methods

CreateFromConnectionProfile($connectionProfile):

Creates a NetworkOperatorTetheringManager [10] using the given profile as the
public interface and Wi-Fi as the private interface and returns it.

Parameters of the function: Connection profile to be used.

GetConnectionProfiles():

Page 38 of 117

Gets all the saved connection profiles even if they are not associated with the
internet connection currently.

It has no parameters.

GetCurrentAccessPointConfiguration():

Indicates the network account id and specifies the passphrase used for
authentication when establishing a connection over the tethering network to Get
the current access point configuration for the network account.

It has no parameters.

GetTetheringClients():

Retrieves a list of tethering clients for this NetworkOperatorTetheringManager.

And returns a list of clients.

StartTetheringAsync():​

Establishes the tethering network and returns the result of the tethering network
operation.

StopTetheringAsync():

Shuts down the tethering network and returns the result of the tethering network
operation.

Python 3: We will use Python to control PowerShell and the workflow of the
ChainSpoT program.

3.4​ Subprocess Python Library

Page 39 of 117

The Subprocess module allows you to spawn new processes, connect to their
input/output/error pipes, and simply obtain their return code: it is used for running
external programs and reading their outputs in your python code.

Examples of external programs that we use subprocess to obtain their outputs:

1) command prompt (CMD)

2) Windows PowerShell

Subprocess functions:

the most useful function of the subprocess is the subprocess. the run() function
which is used to run an external program from your Python code as shown in

Figure 8 (from our ChainSpoT program).

Figure 8 Subprocess example

​
Subprocess can be used in two ways:

1) using convenience functions: call, check_call, and check_output

2) Popen interface class, which allows great customization, being able to replicate
the behavior of any of the convenience functions.

Convenience functions:

Subprocess. call: runs command with arguments, wait for it to complete, then
returns the return code

Check_output: run the command with arguments and return its output as a string as
shown in fig below

Page 40 of 117

​

Popen: the popen class offers the flexibility to handle fewer common cases not
covered by the convenience functions.

3.5​ PyQt Python Library

It is one of the most common and powerful platform GUI libraries. PyQt API is
a set of modules containing many classes and functions.

PyQt is compatible with all the common operating systems including Linux,
Windows, and Mac OS. It is dual-licensed, available under GPL as well as a
commercial license.

PyQt is a Python binding for Qt, which is a set of C++ libraries and
development tools that include platform-independent abstractions for Graphical
User Interfaces (GUI), as well as networking, threads, and regular expressions,
SQL databases, SVG, OpenGL, XML, and many other powerful features [15].

We will design our program layout using Qt Designer by using its simple and
easy drag-and-drop interface so we can make the design we want or imagine
without having to write a code. It starts by choosing the needed widgets or then
dropping the required components on them. We can also change the form or
each component’s properties easily. Then we will convert it to PyQt code by the
following command:

pyuic5 -x filename.ui -o filename.py

3.6​ The connection of the devices forward and reverse

To make the chatting and sharing files program, the devices of the network

should:

●​ connect each other

●​ have a route to pass through to reach all devices.

 In the intermediary device-connected network the router or switch handles the

routing and connection between the connected devices. For ChainSpoT the

Page 41 of 117

network has no intermediary device to connect the devices, The network is

connected via a hotspot which will connect only one hub.

To determine how to implement it we went in three different ways:

1.​ Windows Routing table.

2.​ Sockets & Threads.

3.​ Gns3 virtual Router.

 As we were not certain about any solution, so we went for all of them in parallel.

3.6.1​ Windows Routing Table.

In networking, Routing is the process of deciding the path to the destination

and directing the packets through this path [12].

 With the routing process, routers decide where to send the packets based on

their routing table which contains different routing destinations’ IP addresses with

their subnet masks gateways addresses and other information.

Windows allows us to get the IPv4 routing table by route PRINT -4

command on the command prompt.

For more information about the routing table and its parameters see Appendix A.

Due to the lack of window resources for networks built by hotspots, our results

depend on testing.

From testing, we will try to understand the routing tables we get from the test

cases and make the best use of them.

Page 42 of 117

3.6.1.1​ Testing

First test case

Making a network of 4 devices connected with no internet in a serial branch.

The second device is connected to the first device by hotspot, the third device is

also connected to the second device by hotspot, and so on making the shown

network in Figure 9.

Page 43 of 117

Figure 9 First Test Case [9]

All devices in the network have the same hotspot interface IP of 192.168.137.1

The routing table of the first device shown in figure 10:

Page 44 of 117

Figure 10 Routing Table for Device 1

It has no Wi-Fi interface in its routing table but has a Hotspot interface because it

starts the network with no internet.

The network ID 127.0.0.0 is a reserved network for loopback addresses to the

localhost. The loopback address is also known as localhost which means this

computer. It is used to access the network services that are running on the host by

its loopback network interface with a range from 127.0.0.0 to 127.0.0.255 [13].

127.255.255.255 is also a broadcast loopback address in a network with ID

127.255.255.0

As said this device has only the hotspot interface in the routing table with IP

192.168.137.1 and as shown in the above table this interface has three routes

with three destinations:

Route to 192.168.137.0 network of the current device from hotspot IP

192.168.137.1 and other parameters as shown in the above routing table.

Route to 192.168.137.1 which is the hotspot interface.

Route to 192.168.137.255 is a broadcast address in the network 192.168.137.0

Page 45 of 117

224.0.0.0 which is a network providing multicasting addresses with a range of

addresses from 224.0.0.0 to 224.0.0.255

255.255.255.255 which is the global broadcast address, which means that the IP

stack is supposed to send the packet to all network interfaces, and routers that are

configured to forward broadcasts are supposed to send them on.

The routing table of the second device shown in Figure11.

Figure 11 Routing Table for Device 2

It is different from the first one as it has Wi-Fi and Hotspot interfaces in the

routing table, so it has additional routes from the Wi-Fi interface.

From the routing table, we can find that the Wi-Fi interface has an IP address of

192.168.137.79

0.0.0.0 is the default route used when the desired destination is a different IP not

listed in the routing table to where packets are directed.

Page 46 of 117

The routing table of the third device shown in Figure 12.

Figure 12 Routing Table for Device 3

It also has both Wi-Fi and hotspot interfaces as it is centered between two

devices.

From the routing table, we can find that the Wi-Fi interface has an IP address of

192.168.137.75

The routing table of the fourth device

It has no hotspot interface in the routing table as it is the end of the network.

The routes which are shown in Figure 13. are the same as those discussed above.

Page 47 of 117

Figure 13 Routing Table for Device 4

From the four above routing tables, we noticed that each device is considered a

network and acts as a router with a routing table so

192.168.137.79,192.168.137.75 and 192.168.137.27 are not in the same network.

The Wi-Fi interface and the hotspot interface are separated from each other.

By testing the connection by the ping IP command, we got the following results:

Upward connection

After testing and trying to understand the tables, we think that each device can

ping or connect to its upper direct connected devices by route 1 in the routing

table as each upper device has a different IP address from those listed in the

routing table of the current device.

Page 48 of 117

So, it is possible to send packets by sending them to the next hop and then the

coming hop until reaching the destination.

When we added a router to the network, with different IP from IPs listed in the

routing tables of the devices in the network, connected to the first device. other

devices in the network could see and ping it by the above routes.

For example, the last connected device in the network can ping the router by

using route one in its routing table which directs the packets to the upper device

through the hotspot and the upper device to the next device until reaching the

router.

Downward connection

We think that each device uses the following routes in its routing table:

When needing packets to be directed to a certain location it uses the route with a

subnet mask 255.255.255.255 to force packets to go only to this destination.

Second test case

Making a network of 4 devices in a way that makes one the parent(master) and

the other three devices the children to this parent as shown in Figure 14.

Page 49 of 117

Figure 14 Second Use Case [9]

Each child connects to the parent by hotspot.

We noticed that:

Each child can send packets to its parent.

The children can also send packets to themselves.

When we expanded the network by making grandchildren as shown in Figure 15,

these grandchildren could not send packets to themselves as they are considered

different networks, they could only send packets to their parents (children of the

master).

Page 50 of 117

Figure 15 Grandchildren use case [9]

From the two test cases, Our based tree in the project can be accomplished

by a centralized network by setting a loopback interface, with a different IP from

the destination IPs listed in the routing tables of the whole devices in our network,

in the device which starts the network as explained above when adding a router

with different IP so, also other devices in the network can connect to this

loopback interface via route one in the routing table of each device through the

hotspot.

When setting the IP of the loopback interface 192.168.0.2 with subnet mask

255.255.255.0 and testing the ping command from any device on the network we

receive successful replays.

Page 51 of 117

For more information about the loopback interface see Appendix B

3.6.2​ The Sockets & Threading

Sockets and the sockets API [1] are used to send messages across a network.

They provide inter-process communication (IPC) for more information about

sockets see Appendix C

3.6.2.1​ The Decentralized Approach

Each node is considered as a client and a server at the same time so all nodes will

have their listeners on until other nodes try to connect to them.

In a simple case of three connected devices, the connection works well, and

the simple messages are sent to the target device. As shown in Figure 16. we

attempted to send a message “Ahmed” from the client device connected via

Page 52 of 117

hotspot to another device which also connected via hotspot to the master. The

message is successfully sent to all devices [2].

Figure 16 Simple Example [9]

In Figure 17. for the sender here the program is sending a simple message

“Ahmed.”

Figure 17 Code of The Simple Example 1

Next, the 2nd device will receive the message on the hotspot interface, print it, and

forward it to the last device through the Wi-Fi interface.

Page 53 of 117

Figure 18 Code of The Simple Example 2

At the last device, the message is received on the hotspot interface and printed.

Page 54 of 117

Figure 19 Code of The Simple Example 3

As shown in the figures 18,19 above the code is as simple as the program.

It is just one way; the message is sent from beginning to end.

It is not a reliable chatting form. Reliable chatting has two ways of communication

each user sends and receives. So, each user should have a listener and sender

working at the same time which leads us to the usage of threading.

Threading in a chat program enables us to run the sending and receiving codes at

the same time, but threading makes the code more complicated.

What about tree of devices chatting with each other? the more devices the more

complicated the code is.

Page 55 of 117

For the tree network:

The structure of the network tree will be sent to all nodes and each node

will be able to know its position in the tree and will decide which path to

take to reach the message to its destination.

Since we can have multiple clients to each node(server), each of them is put

in a separate thread and start listening for his commands.

Figure 20 Decentralized Use Case[9]

As shown in the Figure 20, the ChainSpoT chat program using sockets needs a

code for the listener and sender (two linkers up & down) between two different

devices. This will be done by threading which makes the code even more

complicated.

For explanation device (192.168.137.42) ’ll be connected to nine devices, it will

have a listener of (8) for its Children (hotspot-connected devices) and a listener of

(1) for its parent (Wi-Fi-connected device). It also has 2 linkers to transfer message

from Children to parent and reverse vice. For the linker, it will need to look for the

address and take a decision to know where to send the message depending on the

structure of the tree (network). All these processes must be up together all the

time which increases the need for threading, makes the code even more

Page 56 of 117

complicated, and increases the consumption of hardware resources. And the

same for all other devices in the tree.

3.6.2.2​ The Centralized Approach

As mentioned in 3.6.1.1, The base of the centralized approach is the loopback

solution which depends on a centralized device “master.”

Figure 21 Centralized Use Case [9]

The tree consists of a master device with a loopback interface acting like a server

and connected device (clients).

Clients first connect to the server then send their messages to the server and the

server forwards them to its connected devices. The master forwards the message

to all devices "broadcast”, or the destination device “unicast”.

3.6.3​ GNS3​

It is open-source software that emulates Cisco router and switches hardware to
simulate complex networks. We can use GNS3 on any computer to test with
various router configurations.

It allows us to build our network and create many projects by using Cisco and
non-Cisco technology, and we can access these projects anytime without needing
of internet connection [14].

Page 57 of 117

To see a small introduction about Gns3 and the configuration of the network you

can see Appendix D

CONFIGURATION AND BUILDING OUR NETWORK:

After installing GNS3, we can configure our network and we use the bridged from
loopback interface in some steps shown in Appendix D.

 After these steps, the connection is made as shown in the Figure 22.

Figure 22 GNS3 Network

Now we start the router. Then, open the console to configure the Ip address of the

router.

IP Configuration Commands:

i.​ conf t
ii.​ interface fastEthernet 0/0

iii.​ ip add 192.168.0.1 255.255.255.0
iv.​ no shut

Page 58 of 117

Figure 23 Router Configuration

Now we can connect the cloud (the physical PC) to the router and ping
successfully.

Page 59 of 117

Chapter Four: Implementation

Page 60 of 117

In this chapter, we will discuss how our project is implemented using python

programming code to build the ChainSpoT application.

4.1​ Tutorial

The initial interface of the program is the tutorial.

 At first, our code of the program must be run as an administrator by the following

function:

 The function is set and called in the tutorial code form to be run once opening

the program because managing Wi-Fi in the incoming forms, essentially needs

windows CMD and PowerShell to be run as an administrator.

Page 61 of 117

4.2​ Master or client

After the tutorial, there are two options for the user to choose from them as

shown in Figure 24.

Figure 24 Maser or Client Form

4.3​Master

If the user chooses to be a master to start a network, the following window will be

shown. (Figure 25).

Page 62 of 117

Figure 25 Master Form

The master is allowed to set a password to its network, and it is given a unique

room number and master ID to begin the network.

●​ The power_wifi function shown in the image below is used to get the

around available wi-fi interfaces with their SSID and power returned in a

dictionary by extracting only SSIDs and corresponding powers and for

ensuring getting all available interfaces at a time, the function is repeated

twice.

Page 63 of 117

●​ The parse_wifi function shown in the image below is used to return only the

power of the meaning interfaces in our project named in a certain way of

three numbers, a list of spots IDs for all devices, a sorted list of the available

rooms, and a sorted list of computer IDs using the output of the above

power function.

●​ The interface_scan function (called by a created thread) shown in the image

below is implemented to scan the Wi-Fi interface using the pywifi library.

Creates variable wifi from pywifi library.

Determines which interface to be scanned.

Page 64 of 117

If any event interrupted the thread, it breaks and doesn’t continue scanning.

Else scan the selected interface and sleep every five seconds.

This helps in showing continually updated information about the available rooms.

●​ The next thread (room_timer_check function) shown in the image below is

implemented using the function parse_wifi() to show the available rooms

of networks.

●​ The run() function which is used to run windows PowerShell in our code is

shown in image below.

●​ For the master to open the hotspot it uses the following function using

some PowerShell functions and commands.

def start_hotspot(self,hotspot_name,password)

Page 65 of 117

It must start the hotspot via the loopback interface which is called Ethernet 2 .

●​ During the operation of the network the master checks the hotspot

continually by the next function to guarantee a stable connection with the

other devices.

def check_hotspot(self,prev_check=0):

It just checks hotspot if it turns on or off.

4.4​Chat application

Server-side:

In the function which starts the hotspot in master.py code we start two threads

one for the server (master) and the other for the client as shown in image below.

●​ def server_run(): this function (shown in the image below) initializes a list

for the clients (who will connect to the server), an empty variable for the

last receiving message which will store the message until it is completely

sent to the target and finally a server socket, then calls

create_listening_server() function.

●​ def create_listening_server(): this function (shown in the image below)

creates a socket for the server giving it the loopback interface IP

(192.168.0.2) of the master(server) device and port number (for ex:

port=10319) as parameters using bind() method then make the socket

Page 66 of 117

listens for incoming connections with listen() method and finally the

function receive_messages_in_a_new_thread() will be called.

●​ def receive_messages_in_a_new_thread(): this function (shown in the

image below) contains a while loop which includes the whole code which is

responsible for establishing a connection between the server and client by

accept() method.

The second part of the while loop contains the part of code for Adding the client

to the clients and list then starting a thread for this client to receive messages.

●​ def receive_messages: this function (shown in the image below) takes the
client object as an argument initializing a variable to contains this object
socket then initializing an empty buffer variable which will receive the
message using recv() method then decoding this message storing it in the
last_received_message global variable and calling the
broadcast_to_all_clients() giving it the client’s socket object as an argument.

Page 67 of 117

●​ def broadcast_to_all_clients(): this function (shown in the image below)

takes the sender socket object and then sends the message to all clients

except the sender client.

●​ def add_to_clients_list(): this function (shown in the image below) is used

for adding a client to the client_list.

●​ def delete_from_clients_list(): this function (shown in the image below) is

used for deleting a client from the client list.

Page 68 of 117

Client side:

●​ Def client_run(): this function (shown in the image below) just calls three

functions initialize_socket() and

listen_for_incomming_messages_in_a_thread() and on_join().

●​ Def initialize_socket(): this function (shown in the image below) initializes a

client socket connecting it to the loopback interface-id (192.168.0.2) of the

master (server) with port 10319 by all done by connect() method of the

sockets.

●​ Def listen_for_incomming_messages_in_a_thread(): this function (shown

in the image below) just creates a thread for receiving the incoming

messages safe of the client from the server.

Page 69 of 117

●​ Def receive_message_from_server(): this function (shown in the image

below) receives the message using recv() method then checks if word

‘parent’ in the message that means that the json tree structure is in the

message so it calls add_to_tree() function then continues another iteration

of while loop of receiving and if the word ‘joined’ in the message it emits a

signal to the GUI thread which shows a message “user has joined” in the

chat plaintext.

●​ Def add_to_tree(): if the hotspot IP of the node is already in the tree

structure, we replace the newest one with the old one to keep the tree

structure updated during the run time of the program and if not, then we

add the new one in its position of the tree structure. The add_to_tree()

function is shown in the image below.

Page 70 of 117

4.5​Tree Structure

This is one of the trickiest parts of the ChainSpoT code which controls the

visualization of the network tree structure during the runtime of the application.

●​ on_join function (shown in the image below):

Each time a client joins the server room (automatically after connecting to the

network) a thread will be created for this client calling his tree_send function.

●​ tree_send function:

We can describe this function in three parts:

Page 71 of 117

I.​ Getting the average of pings to the loopback interface Ip of the Master

(Server).

II.​ Creating a dictionary that will be transformed into JSON structure for each

client containing parent, wi-fi IP, hotspot name, ping, and time. This JSON

will be sent to the server which will send it back to all clients in the network

(including the client in the server device).

III.​ Transforming the dictionary to Json structure sending it on client socket

and then calling the add_to_tree function which is described before in the

clients’ side functions section.

IV.​ Drawing the tree using Graphviz library which made in three steps:

Page 72 of 117

●​ Instantiating step (shown in the image below): a double Dot
objects (dot-tree and dot_statistics) which are graph objects will
be created from Digraph class which have methods to add
nodes and edges to the graph. The for loop is used for creating
nodes for each graph giving each node an index (for connecting
edges between nodes) and its hotspot IP (for tree graph) or
hotspot IP, node IP, Wi-Fi IP and ping (for statistics graph) all
that for visualizing the node associated with all its
dependencies.

●​ Adding edges (shown in the image below): an empty array is created, then a

double for loop for checking each device and its parent and concatenating

between their indices in each index of this array for ex: a = ['12', '13', '25',

'26', '34', '47', '46'] (will make edges between 1 and 2, 1 and 3, 2 and 5, etc.)

that happens using dot. edges and passing the array to it (done for dot_tree

Page 73 of 117

graph and dot_statistics graph).

●​ Saving images (shown in the image below): we set the extension of Png to

the graph objects and then render the image of each graph. mov_bin() and

delete_bin() are functions used to copy Graphviz files to the working

directory in the processing time of rendering the image and then delete

them after the image is rendered.

4.6​ Client

Page 74 of 117

If the user chooses to be a client to join a room, the following window will be

shown (Figure 26)

Figure 26 Client Form

Here the client is allowed to enter the room number which wants to join with its

password.

●​ Check function:

After connecting to either master or nodes break down can happen the hotspot

may go off or the Wi-Fi may turn off.

Page 75 of 117

The check function shown in the image below is always running while the

application is turned on to check if the hotspot and Wi-Fi are working. If the

hotspot is off, it reopens. If the Wi-Fi is down due to the breakdown of connected

node the app reconnects the device to the same node if it is back again or to the

next best node available.

Page 76 of 117

4.7​Client connect

After the client chose the room, the next window will be shown to determine

the best wi-fi to connect based on certain programmed criteria as shown in the

Figure 27.

Figure 27 Client Connect Form

4.7.1​ Sorting function

As mentioned before in 2.3 the choosing of the best node to connect to have

three priorities taken from its hotspot name.

I.​ Hub number

II.​ Power of hotspot signal

Page 77 of 117

III.​ ID number

The best_wifi_list function shown in the image below shows the code for

sorting the hotspot networks. They are sorted from the best to the worst and

the device choose the best.

4.7.2​ Connecting to the best node

 After sorting the nodes in the Sorting function, the best node to connect to is

the master or the first node in the list. You are connected to the shortest path to

the whole tree after the node itself. However, the node signal can be weak or

there are 8 devices connected to it. If the 8 devices are connected to the node the

new device cannot connect to it the problem is there is no way for unconnected

device to know the number of connected devices of the node hotspot, and if it

tried to connect to the device would not give any errors or stop; it will continue to

try to connect. So, there are limitation to connect to the first.

●​ The first node in the list (or the Master if seen) its single is at least 50%

●​ If the time taken to connect it exceeded a certain duration (15 seconds) the

device will stop trying to connect the master and connect to client with

best choice.

If the first node or master limitations are not satisfied, the device will try to

connect to other clients. As for the clients also have limitations.

●​ The power at least 60 %

●​ Exceeding certain duration of 15 seconds

Page 78 of 117

If the client node does not satisfy the limitations, the device tries to connect to

the next node and then it is given a unique id in the network. The image below

shows the try_connect function.

Page 79 of 117

Chapter Five: Testing

Page 80 of 117

The next figures will show the result of several forms of the application.

5.1​ Tutorial

At first when you open the application the tutorial screen will appear, this screen

contains basic information about the application as shown in Figure 28.

Figure 28 Tutorial Form

You can continue to read or skip if you are familiar with the application.

5.2​ Master Or Client

When you skip the tutorial, the master or client screen appears

Page 81 of 117

This screen makes you choose which option do you need the application for.

5.3​ Master Test

If you open the application and you are not surrounded by any other rooms, the

application will give you the number "1" for you room ID and your hotspot will be

"1.0.0".

Page 82 of 117

If you open the application and you are surrounded by other rooms, the

application will give you the next number of the last room number for you room

ID. As you see here in the following example, The Master sees room 1. So, when

you press start, it will open Room 2.

Page 83 of 117

After the Master opens a hotspot with a unique name, it will set up TCP server at

loopback interface (which all the clients can see it).

5.4​ Client Test

Now if someone is interested in joining your room, he would just need to enter

the room number and the password. After entering the room number, the

Page 84 of 117

application will try to connect to the best node.

5.5 Client Connect Test

When client fills the room number and password and presses “Connect” it will

lead to an open Client Connect Form Which lists all seen nodes sorted by Hub

Count, power then Device ID. The application tries to connect them one by one.

Until connection is established then the application goes to the Client form again

with Connected state.

Page 85 of 117

Page 86 of 117

If anything interrupts the connection the client will return to the client connect
window to connect to any hotspot.

5.6 The Service of The Application

After entering to a room as a master or client, the service of the application will

start to work.

5.6.1 chat application

 When a client connects to the ChainSpoT network. It tries to connect to the

server (which located in the loopback interface of the Master). The client sends

messages to the server. The server broadcasts all received messages to all clients

excepting the one who sent these messages.

Page 87 of 117

5.6.2 tree draw

 As we showed before in 4.5 Tree Structure in tree_send() function,
Each device sends its parent hotspot name, Wi-Fi IP, his hotspot name, average
ping, and current time to the server. The server receives these information and
broadcasts it to all clients. The client receives this information and build the tree
with it to show the hierarchical structure of ChainSpoT network.

Page 88 of 117

5.6.3​ Statistics

 Statistics uses the tree_send() function too, but instead of show just

hierarchical structure it’s show all the information.

Page 89 of 117

5.7 Test Case

For this test case we have 5 laptops which aren’t high-end laptops, it’s just

economic laptops with budget network cards which we use in our test to get more

realistic results.

At first, the Master started the ChainSpoT network with ID “2.0.0” and waits the

clients to join its room.

Page 90 of 117

Then the clients join the master room one by one. All the 4 laptops connected

directly with the Master hotspot because they all had seen the master with good

power, and it always has less hub count. Each connected device could open a

hotspot (with a unique node ID) for others to join the room.

Page 91 of 117

Page 92 of 117

Page 93 of 117

As soon as clients join the room, they send their information to the Master who

broadcasts to all clients to draw the tree hierarchical structure and statistics as

mentioned before.

Figure 29 Tree Draw Example

Page 94 of 117

Figure 30 Statistics Draw Example

After The connection has dropped in device “2.818.1”. It reconnected again with a

new ID “2.96.1” still having the same IP address “198.168.137.163”. The tree and

statistics were updated as shown in the following figures.

Page 95 of 117

Page 96 of 117

As shown in Figure 31, When new node joins the ChainSpoT network it sends a

message “has joined” to the server which sends it back to All devices excepting

the sending device. As you can see every node in this test case could chat with

each other.

Figure 31 Chat Example

Page 97 of 117

5.8 Result

●​ As we see in figure 29, The network tree shows us how the connection

between devices takes place.

●​ As we see in figure 31, The connection of devices is achieved as shown in

the chat and the messages took a very short time (a few milliseconds) to

appear in the other devices which achieves a good communication.

●​ From the statistics we can determine the quality of connection by the time

of the ping of each device on the master.

As we see in Figure 30, The first device with Hotspot ID 2.146.1 and IP

192.168.137.84, the distance was 2 meters from the Master and took 74 ms to

ping him.

The second device with Hotspot ID 2.818.1 and IP 192.168.137.163, the distance

was 1.5 meters from the Master and took 5 ms to ping him.

The third device whose Hotspot ID 2.940.1 and IP 192.168.137.25, the distance

was only one meter from the Master and took 2 ms to ping him.

The fourth device with Hotspot ID 2.72.1 and IP 192.168.137.140, the distance

was 2.5 meters from the Master and took 86 ms to ping him.

Different ping times depend on the distance between devices and the quality of

Wi-Fi network card. The target of this test is to know our limitation and show how

distance affects the quality of connection. In real life scenario the distance

between devices will be more less than that and the quality of Wi-Fi network card

will be better than that. It’s just the worst case to study and know our limits.

Page 98 of 117

Chapter Six: Conclusion and Future Work

Page 99 of 117

6.1​ Conclusion

In our project, in the beginning, we aimed to create an application that

establishes a network between devices without any intermediary devices (network
infrastructure hardware). The network devices act as servers and clients at the same
time. We could not make the devices act like servers and clients, but we
could establish the network with a centralized device “Master” to connect the
network. The centralized device has a loopback interface and acts like a server.
When a client wants to send their data to another device, it directs it to the master
and the master sends it back to all clients, except the sender. In the application, the
devices are sorted in a tree shape. The tree is being displayed and upgraded with
each new device that connects or disconnects the network. The devices connected
to this network can chat with each other. We created a chatting application that all
the network devices can group chat in. We were looking forward to creating a
sharing files program as well as chatting, but we did not have time to implement it,
unfortunately. Now you can start a free wide range of networks without being
constrained by the number of clients and communicate with your friends or your
colleagues. So, the number of your team members will not be a big issue as the
ChainSpoT tree will grow until we hit a level where connection slow and cannot
grow further. No need for user experience in the network. Our program is very
user-friendly. Just by a few steps the net, work starts, and the client connects to the
network. We also guide the users in the tutorial to teach them how they use our
program. And for the superuser, we made a statistics section for the network
statistics to help him in troubleshooting the network. The statistics section shows
the user the node name, node Ip and ping time for the whole tree. The user can
change the root ma at any time even after the connection has been done. Finally,
we hope that we were able to help people, even in a small way, in communicating
-with each other, and we hope that we can improve our application so that
everyone can use it with the best performance and provide them with many
benefits.

Page 100 of 117

6.2​ Future Work

In our project, we did not have time to improve the program in the best way.
Unfortunately, there are still many problems that we cannot solve. Also, we can
enhance our project with some features.
In this section, we will explain the problems we face in the journey of developing
the project and some suggested solutions for these problems for future work.
If the master or any of the nodes changes its hostname the whole branch will lose
connection to that node. the name of the node indicates the name of the network
the leaves connect to. If the name is changed the hotspot will restart and the leaves
will down. This leads to another critical problem.

If one of the nodes went down, every connected node would also go down
Introducing the solution to this problem the program will immediately change the
connected leaves of that node to another node.

Due to the design of the network the chat and shared files are broadcasted to the
whole network: In developing the program, we are aiming to protect and encrypt
the data. so, we can make Private chats between users that require securing data
delivery.

Implementing a dynamic algorithm to make the tree of our network balanced.
Thus, we can improve the performance and there is no load money device.
The old laptops and desktops will slow the network speed due to the old network
cards: So, the old devices will be set up to be only leaves.
Finally, testing the performance for the whole network to achieve the best
performance.
Log everything, the analysis of this logged data will improve our application.
Support the Linux, IOS and android platforms.

Page 101 of 117

7​ References:

[1] SOCKET PROGRAMMING HOWTO — PYTHON 3.8.13 DOCUMENTATION by
Author Gordon McMillan

[2] - https://docs.python.org/3/library/socket.html.

[3] Data Communications and Networking by Behrouz A. Forouzan.DATA
COMMUNICATIONS AND NETWORKING – BEHROUZ A. FOROUZAN.FOURTH
EDITION[A4].PDF - GOOGLE DRIVE

[4] Computer Networking First-Step by Norman Laurence. An introductory guide to
understanding wireless and cloud technology, basic communications services and network
security for beginners, Laurence, Norman, eBook - Amazon.com Unlimited reading.

[5] https://sourcedaddy.com/networking/historical-conceptual.html sourcedaddy |at|

gmail.com

[6] https://www.mobikin.com/mobile-phone/shareit-review.html

[7] https://obkio.com/blog/how-to-measure-network-performance-metrics Networks are

changing. Monitoring solutions should too.Obkio is a legacy-free application designed to

fill a gap within the industry.

[8]https://www.researchgate.net/publication/340050983_Efficient-Path_Selection_Scheme
_Using_Optimized_Adhoc_on_Demand_Multipath_Routing_Protocol_For_Adhoc_Netwo
rks/figures?lo=1 Juan P. Macas, Recent Developments in Mobile Communications A
Multidisciplinary Approach, ISBN 978-953-307-910-3, 2011 InTech

[9] https://www.lucidchart.com See and build the future with a powerful visual
collaboration suite.

[10]NetworkOperatorTetheringManager.StopTetheringAsyncMethod
(Windows.Networking.NetworkOperators) - Windows UWP applications | Microsoft Docs

[11] Enable Windows 10 built-in hotspot by cmd/batch/PowerShell - Stack Overflow

[12] https://ipcisco.com/lesson/routing-table/

[13] IP Address Lookup | Locate any public internet IP address (lookip.net)

[14] The Book of GNS3 by Jason C. Neumann. THE BOOK OF GNS3 PDF

[15] Python and PyQt: Building a GUI Desktop Calculator – Real Python

Page 102 of 117

https://docs.python.org/3.8/howto/sockets.html
https://docs.python.org/3/library/socket.html
https://docs.google.com/file/d/0B2xtAGmXggYSeUw3RHhRUko0Y00/preview?resourcekey=0-J-Zn5LHfvKHNp3tK33AwZw
https://docs.google.com/file/d/0B2xtAGmXggYSeUw3RHhRUko0Y00/preview?resourcekey=0-J-Zn5LHfvKHNp3tK33AwZw
https://docs.google.com/file/d/0B2xtAGmXggYSeUw3RHhRUko0Y00/preview?resourcekey=0-J-Zn5LHfvKHNp3tK33AwZw
https://sourcedaddy.com/networking/historical-conceptual.html
https://www.mobikin.com/mobile-phone/shareit-review.html
https://obkio.com/blog/how-to-measure-network-performance-metrics/
https://www.researchgate.net/publication/340050983_Efficient-Path_Selection_Scheme_Using_Optimized_Adhoc_on_Demand_Multipath_Routing_Protocol_For_Adhoc_Networks/figures?lo=1
https://www.researchgate.net/publication/340050983_Efficient-Path_Selection_Scheme_Using_Optimized_Adhoc_on_Demand_Multipath_Routing_Protocol_For_Adhoc_Networks/figures?lo=1
https://www.researchgate.net/publication/340050983_Efficient-Path_Selection_Scheme_Using_Optimized_Adhoc_on_Demand_Multipath_Routing_Protocol_For_Adhoc_Networks/figures?lo=1
https://www.lucidchart.com
https://docs.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.networkoperatortetheringmanager.stoptetheringasync?view=winrt-22000
https://docs.microsoft.com/en-us/uwp/api/windows.networking.networkoperators.networkoperatortetheringmanager.stoptetheringasync?view=winrt-22000
https://stackoverflow.com/questions/45833873/enable-windows-10-built-in-hotspot-by-cmd-batch-powershell
https://ipcisco.com/lesson/routing-table/
https://www.lookip.net/ip
https://oiipdf.com/the-book-of-gns3
https://realpython.com/python-pyqt-gui-calculator/

Appendix A.​Routing Table

In networking, Routing is the process of deciding the path to the destination

and directing the packets through this path. With the routing process, routers

decide where to send the packets. In other words, routing is a very important part

of networking. Because, based on some metrics, available paths are determined

to a destination and the best path is chosen among these paths to be used in

sending the packets.

Any router to know where and how to forward packets of data it receives to any

specific destination uses its routing table, which is a mapping for the router, it

contains different routing destinations’ IP addresses with their subnet masks, and

gateways addresses, and other information. it is built with static routing and with

routing protocols like OSPF, BGP, EIGRP, etc.

It doesn’t contain all the possible destinations but only the directly connected

destinations. each interface of the router is considered a network. when the

router receives a packet, it forwards it to the next network (hop) until it reaches

the desired destination.

Routing table parameters

Windows allows us to get the IPv4 routing table by route PRINT -4 command on

the command prompt for example the following routing table (Figure 32).

Page 103 of 117

Figure 32 Routing Table Parameters

Each parameter of the routing table has a different meaning.

The network destination: it is the network that the router can send the packet to

it. Example: 192.168.56.0

Netmask: is the Subnet ID of the destination address. Example: 255.255.255.0

The gateway is the entrance point to another network.

 A default gateway is an address to which packets are sent if there is no specific

gateway for a given destination listed in the routing table.

Interface: it is an outgoing interface from which the packet should go out to reach

the destination network.

Metric: is a value that indicates the quality of the path and helps in choosing the

best path according to these various parameters:

 Hop count, Path reliability, Path speed, Load, Bandwidth, Latency and

Maximum transmission unit.

It determines the priority of the route. If there are several routes to the same

destination the lowest metric

Page 104 of 117

Appendix B.​Loopback Interface

The loopback adapter is a dummy network card that is used as a testing tool

for virtual network environments where network access is not available or

when you want to isolate your testing network from your main network.

You use the loopback adapter on your computer (which is the host

machine) to enable your virtual machine (guest operating system) to

communicate as if they are in a network without having to use an external

network, such as your work network or home network.

We can make a loopback interface

1-from hdwwiz as shown in Figure 33.

Figure 33 Install loopback interface 1

 2-Then choose to install the hardware by manual selection as shown in Figure 34.

Page 105 of 117

Figure 34 Install loopback interface 2

3-Then choose network adapters as shown in Figure 35.

Page 106 of 117

Figure 35 Install loopback interface 3

4-Then choose Microsoft and Microsoft KM loopback adapter as shown in

Figure36.

Figure 36 Install loopback interface 4

Page 107 of 117

5-Then simply click next.

Figure 37 Install loopback interface 5

6-At last check the adapters on your device, you will see that the loopback

interface is made as ethernet 2 as shown in Figure 38.

Figure 38 Loopback Interface Adapter in Network Connections

Page 108 of 117

Appendix C.​ Sockets

The network can be a logical, local network to the computer or one that is

physically connected to an external network. The obvious example is the Internet,

which you connect to via your ISP.

Socket API Overview

Python’s socket module provides an interface to the Berkeley Sockets API. The

primary socket API functions and methods in this module are:

●​ socket()

●​ bind()
●​ listen()
●​ accept()
●​ connect()
●​ connect_ex()
●​ send()
●​ recv()
●​ close()

Python provides a convenient and consistent API that maps directly to system calls
their C counterparts. As part of its standard library, Python also has classes that
make using these low-level socket functions easier. There are also many modules
available that implement higher-level Internet protocols like HTTP and SMTP.

One socket (node) listens on a particular port at an IP, while the other socket

reaches out to the other to form a connection. The server forms the listener

socket while the client reaches out to the server.

The main methods we attempted to use in the ChainSpoT chat program are:

●​ Sending:

●​ connect (): connects to a remote socket at the address.

●​ send (): sends data to the socket.

●​ Receiving:

Page 109 of 117

●​ bind(): binds the server to a specific IP and port so that it can listen to

incoming requests on that IP and port.

●​ listen(): puts the server into listening mode. This allows the server to

listen to incoming connections.

●​ accept (): initiates a connection with the client.

●​ recv(): receives data from the socket with the size specified by buffer size

(mostly 1024 bytes).

●​ close(): closes the connection with the client.

APPENDIX D.​ Gns3

It is open-source software that emulates Cisco router and switches hardware to
simulate complex networks. we can use GNS3 on any computer to test with
various router configurations.

it allows us to build our network and create many projects by using Cisco and
non-Cisco technology, and we can access these projects anytime without
needing of internet connection.

It provides us with emulated hardware devices (a variety of routers, switches,
and PCs) that we can combine, and these devices run the real network operating
systems such as Cisco IOS, simulated operating systems such as NX-OSv, and
the ability to share resources across multiple computers. So, we can create a
virtualized network using these devices.

it uses a backend hypervisor (a program used to run and manage one or more
virtual machines on a computer) application to emulate the hardware that runs
Cisco IOS (we run an actual IOS image file on our PC).

In addition to Cisco IOS, GNS3 can integrate Quick Emulator (QEMU) and
VirtualBox virtual machines running operating systems such as Linux, BSD, or
Windows.

Also, all the configuration commands and output come from a real IOS, and
thus, theoretically any protocols or features that an IOS version supports are
available to use in our network designs.

Page 110 of 117

Configuration and building our network:

After installing GNS3, we can configure our network in some steps:

▪​ First, we select how we would like to run our GNS3 network simulation as
shown in the Figure 39.

Figure 39 GNS3 Setup Wizard

We choose the virtual machine option (so we need to download and install
VM-WARE) then we choose the server path, Host binding, and port.

Before we can boot up a router, we will need to install and configure at least
one Cisco IOS image file in GNS3

We installed the c7200 IOS image as we will use the cisco router 7200 in our
test.

Now we can select the router (c7200) and it is available for use after
configuration from the console.

We want to connect a cloud (the physical PC) to the router so we must choose
the server

Page 111 of 117

We choose GNS3 VM as shown in Figure 40.

Figure 40 GNS3 Choose Server

We need to give an interface manually (loopback interface to my device) as
mentioned in 3.6.1.1 .

Now we will give an IP address to the loopback interface that we created but this
IP address must be in the same network with the Router so they can see each other.

We chose 192.168.0.2 as the Ip address for the loopback and 192.168.0.1 as the Ip
address for the router as shown in Figure 41.

Figure 41 Loopback Static IP

Page 112 of 117

To connect the cloud (the physical pc) to the router we need bridged interface in
GNS3 VM. We could take bridged from ethernet or Wi-Fi interface. But after
we disconnect from Ethernet or Wi-Fi. Bridged network will no longer be
available. We need a more stable interface, not depending on connecting state.
So, logical interface became a tempting solution. So, we use bridged from
loopback interface as our logical interface and this is done by some steps on
VM-ware as shown in the figures below

First, we add new interface in Virtual Network Editor in VM-Ware as shown in

Figure 42.

Figure 42 Add Virtual Network to Virtual Network Editor

Then, we make it bridged from Loopback interface as shown in Figure 43.

Page 113 of 117

 Figure 43 Add Bridged Loopback Interface to VMnet0

Then, in GNS3 VM-Ware settings we add new hardware (Network Adapter)

Page 114 of 117

In this new adapter we make its network connection Bridged as shown in

Figure 44.

 Figure 44 Add Bridged Network Adapter to GNS3 VM

 configure the cloud with the new interface (eth2) as shown in Figure 45.

Page 115 of 117

Figure 45 Configuration the Cloud with The New Interface

Now connect router to the cloud by Ethernet2

Figure 46 Connect the Router with The New Interface

The connection is done as shown in the following figure.

Page 116 of 117

Page 117 of 117

	ACKNOWLEDGMENT
	
	List Of Figures
	Abstract
	Chapter One: Introduction
	1.1​Problem Statement
	1.2 Objectives
	 1.3 Stakeholders
	1.4 Project Scope
	1.5 constraints
	1.6 Cost
	1.7 Project Outcomes

	Chapter Two: Background and Related Work
	2.1 Related Work
	2.2 Wireless Network Modes
	 2.2.1 Infrastructure Mode
	 2.2.2 Ad-Hoc Mode
	 2.2.2.1 setting up an Ad-hoc network

	 2.2.3 Infrastructure Mode Vs Ad-Hoc Mode.

	2.3​Chain Start
	2.4​Static algorithm to determine the best node to connect
	2.5​Dynamic Algorithm
	2.6​ Operating system dependency
	2.6.1 Wi-Fi Network Profile
	2.6.2 “Netsh” Command Using CMD
	2.6.3 Windows API using PowerShell
	2.6.4 Subprocess Python Library
	2.6.5 PyQt Python Library

	2.7​Performance of the network
	2.7.1 Network performance monitoring:
	2.7.2​Network Performance Concept
	2.7.3 Network Performance Parameters
	2.7.3.1​Latency
	2.7.3.2​Throughput
	2.7.3.3​ Packet Loss
	2.7.3.4​User Quality of Experience

	Chapter Three: Analysis and Methods
	3.1​Windows CMD
	3.2​Windows API Using PowerShell
	3.3​Network Operator Tethering Manager Methods
	3.4​Subprocess Python Library
	3.5​PyQt Python Library
	3.6​The connection of the devices forward and reverse
	3.6.1​Windows Routing Table.
	3.6.1.1​Testing

	3.6.2​ The Sockets & Threading
	3.6.2.1​The Decentralized Approach
	3.6.2.2​The Centralized Approach

	3.6.3​ GNS3​
	CONFIGURATION AND BUILDING OUR NETWORK:

	Chapter Four: Implementation
	4.1​ Tutorial
	4.2​ Master or client
	4.3​Master
	4.4​Chat application
	4.5​Tree Structure
	4.6​ Client
	4.7​Client connect
	4.7.1​Sorting function
	4.7.2​Connecting to the best node

	Chapter Five: Testing
	5.1​Tutorial
	5.2​Master Or Client
	5.3​ Master Test
	5.4​Client Test
	5.5 Client Connect Test
	5.6 The Service of The Application
	5.6.1 chat application
	5.6.2 tree draw
	5.6.3​Statistics

	5.7 Test Case
	5.8 Result

	Chapter Six: Conclusion and Future Work
	6.1​ Conclusion
	6.2​ Future Work

	7​References:
	Appendix A.​Routing Table
	Appendix B.​Loopback Interface
	Appendix C.​ Sockets
	APPENDIX D.​Gns3

