
Overview
This use case extends the use case scenario from the 1.0 specification. In this scenario we
expand on how OSLC services can helps a build Automation Plan govern and track
ArtifactContribution to a AutomationResult. Though a software asset library has a wide range
of use cases that are driven by user interfaces, this scenario is concentrated on an automated,
mostly a headless OSLC interaction. The interaction of an asset management system with an
orchestrated automation use case is a fundamental mean by which an asset library’s content is
kept compliant in terms of packaging (information, content, format, dependencies, related
content, classification....), and the linking of these assets to the Bill of Materials (BOM), and
overall life-cycle that is driving the creation of that asset. The Automation Plan that is driving
this particular use case is a a build (Compile, Test, Scan...) process. But fundamentally, it
interaction is similar to various kind of automation plans. Plans that drives a deploy (install,
config, verification of a running instance) process, an aggregation process (collection and
distilling of information from various sources into a homogeneous / consumable library content)
etc.

Preconditions
This IT department has an OSLC enabled asset management system to govern their re-usable
software assets (open source libraries, run-time binaries, compilers, models, documents, etc).
The teams have an in house automated build system that runs their builds, deployments etc.

In order to automate the builds of several software development teams, there have been
agreements made between the development and build teams to model the build environment
and dependencies needed to build their product without having to involve a build engineer to
make a change.

They have augmented their Automation plan to govern their build by interacting with an asset
management system (user OSLC interfaces) to:

●​ Define the build configuration that drives the nightly build.
●​ Create a placeholder asset to be used as basis for a published implementation.
●​ Designate runtime and library dependencies used to build their software project.
●​ Publish the built implementations.

System Design

http://open-services.net/bin/view/Main/AssetMgScenarios
https://spreadsheets.google.com/ccc?key=0AkbkiEpiSo62dE5NMlA5WlZKMW0zdzhjVW9mR0J1c2c&hl=en
https://spreadsheets.google.com/ccc?key=0AkbkiEpiSo62dE5NMlA5WlZKMW0zdzhjVW9mR0J1c2c&hl=en#gid=0
https://spreadsheets.google.com/ccc?key=0AkbkiEpiSo62dE5NMlA5WlZKMW0zdzhjVW9mR0J1c2c&hl=en#gid=0
http://open-services.net/bin/view/Main/AutomationHome
http://open-services.net/bin/view/Main/OslcCoreSpecAppendixLinks
https://spreadsheets.google.com/ccc?key=0AkbkiEpiSo62dE5NMlA5WlZKMW0zdzhjVW9mR0J1c2c&hl=en

Figure 1 : Top level system design

As shown in Figure 1 there are two systems the users interact with that work together via OSLC
services (the build system and the asset management system). Via the build system, the
development team defines a build configuration that describes what needs to be done during a
build of the development team’s product. They also define an Implementation asset that works
as a placeholder for the built work products.

During a build, the build process uses the build configuration to determine which resources and
dependencies are needed. These resources could come from source control systems or
published libraries in the asset management system. Once complete, the Build Process
publishes the built asset to the asset management system.

Scenario

The account services development team is building a web application to help better process
account management requests. Their project’s source code has been stored in a source control

repository. The source depends on re-usable open source libraries stored in their asset
management system.

The project is at the point where they would like to schedule candidate automated builds.
Through the build system interface they will define their build process. The build system will run
this process nightly to build their implementation and publish the result back to the Asset
Management system.

Defining the Build Configuration

While defining the build configuration, the user opens a delegated UI within the build system UI
that allows the build engineer to search within the Asset Management system for versions of
dependent tools (compilers, libraries, code generators, etc) to be used during the build.

The build engineer uses a delegated asset creation UI to create a placeholder asset (with links
to the required tools found from the search) where the candidate build will be made available on
publish.

When hovering over links in the build system UI, the build engineer is able to view a preview of
the placeholder candidate build asset created.

Build Process

During the candidate build, the configured build process uses Asset Management OSLC API to
query, retrieve and publish assets from the asset management repository.

Query

System brings the source from SCM that includes information about the dependent bundle
libraries (e.g. manifest, plugin.xml, maven POM files, build manifest etc). The build process
discovers a dependency on the latest Approved bundles (for example Log4j with a version
greater than or equal to 1.2 and less than 1.3) and uses the OSLC query capability to locate the
most appropriate bundle.

Retrieve
System downloads referenced library artifacts (tools from the the
dependencies defined within the project) to be used during build.

Publish
The build system updates the placeholder asset with the built media resources.

Should we be adding references back to the OSLC automation resource?

	Overview
	Preconditions
	System Design
	Scenario
	Defining the Build Configuration
	Build Process
	Query
	Retrieve
	Publish

