Design Doc: Sponsored Operations

Authors: Lin Oshitani Pavlo Khrystenko YunYan Chi
Created: Nov 15, 2023
Latest updates: Feb 22, 2024

Summary
Context

Motivation

Example Use-cases

Terminology
Expected User-flow
Requirements

Functional Requirements

Non-functional Requirements

Nice-to-haves
Proposed Solution

Solution: Host manager operation
Security

Replay Attack

Operation Withholding Attack

Sponsor Bypassing Attack
Caveats and Notes

Zero-tez accounts

1M Restriction

Gas

Replace-by-fee

Who Sets the Fees?

Multi-party Atomic Operations
Related Work

Summary

Enable users to execute operations while having the fee paid by another account.

mailto:lin@marigold.dev
mailto:pavlo@marigold.dev
mailto:yunyan@marigold.dev

Context

Motivation

To achieve mass adoption, it is necessary to reach non-crypto users who may be unfamiliar with
Tezos and don't necessarily own tez. Onboarding such users has a critical hurdle: They are
required to use tez to cover the fees necessary for interacting with their assets, even if they
don't currently hold any tez.

Consider, for instance, a gamer who is not interested in cryptocurrencies but still wishes to
engage with their in-game assets recorded on Tezos. Similarly, imagine a user who seeks to use
stable coins on Tezos but does not want to hold tez for fiscal or regulatory reasons. In both
scenarios, the need for tez hinders the entry of these potential users.

Permits and Gas Station Networks (GSN) have been proposed to circumvent this issue, but they
require individual dApps to integrate GSN support into their contract code. This demands the
redeployment of existing contracts and explicit GSN support in new contract codes, which
impedes broad adoption.

To address this challenge, we propose protocol-level support for users to initiate operations to
any contract while having fees covered by a third party.

Example Use-cases

Gaming dApps subsidize fees for interacting with their in-game assets.
A third-party sponsor subsidizes fees in exchange for non-tez assets, such as on-chain
stable coins or off-chain credit card payments.

e Organizations pay fees for specific marketing campaigns. E.g., Objkt.com gas fees paid
by the objkt.com for a week, all deposits to Tezos 2.0 paid by the foundation, etc.

e Wallets subsidizes some amount of transaction fees per month as a marketing
campaign.

e A third-party sponsor covers fees for withdrawal from sapling contracts. This is done to
ensure that withdrawals are not linked to a user's implicit account through fee-payer
information (reference).

Terminology

e Sponsor: The implicit account covering the fees for an operation.
e Sponsee: The implicit account seeking to perform operations with the fees paid by the
sponsor.

https://tzip.tezosagora.org/proposal/tzip-17/
https://forum.tezosagora.org/t/tezos-gas-station/2766/7
https://tezos.gitlab.io/active/sapling.html#fees-issue

Expected User-flows

Here is an example user-flow involving a sponsee, a dApp the sponsee interacts with, and a
sponsor covering the fees for the interaction.
Sponsee dApp Sponsor Network

Construct operations

<

Operations

A

Sign
«

Signed operations

v

Signed operations

Sign
«

Dual-signed operations

v

Result

A

Result

A

Result

A

Sponsee dApp Sponsor Network

Requirements

Functional Requirements

Support the sponsorship of at least the Reveal and Transaction manager operation.
Support the sponsorship of batched operations.

Support sponsees to construct operations without knowing who will sponsor them.
Allow sponsors to sponsor operations from multiple sponsees in one block.

Non-functional Requirements

Easy to support for wallets.

Easy to support for indexers.

Not break backward compatibility of existing transactions in terms of binary
representation.

Not overcomplicate the protocol code.

Protect sponsees and sponsors from replay attacks.

Proposed Solution

Currently, when users submit operations to Tezos, they:
e Construct a batch of operations,
e sign the operations with their implicit account,
e attach the signature at the end of the binary encoded operation, and
e submitit to the L1.

Note that only one signature is signed in this process.

To enable sponsored operations, we need a way to
- add an additional signature, and,
- have a batch signed by two implicit accounts—one by the sponsee and one by the
sponsor.
To maintain backward compatibility in binary encoding, we explore solutions that involve
introducing a new manager operation that captures this additional signature.

Solution: The Host manager operation

Overview

Have the sponsor include a new Host operation that enables the sponsee’s operation to be
executed in the sponsor’s batch while paying for the fees. In this approach, the sponsor will be
the “host” and the sponsee will be the “guest”.

An operation batch that uses host will look like this:

{

branch = <branch>;
contents = [
host {
source = <source>;

counter

fee

gas_limit
storage_limit
guest_source
guest_signature

<counter>;

<fee>;
<gas-limit>;
<storage-limit>;
<guest-source>;
<guest-signature>;

}s
<rest-of-operations>
1
signature = <signature>;
}
Where:
Field Content
<source> The host’s public key hash. This account will pay for all fees in the
batch.
<counter> The host’s counter.
<fee> The fee for the host operation.

<gas-limit>

The gas limit for the host operation. Should cover the gas cost for
the additional signature check of <guest-signature>.

<storage-limit>

The storage limit for the host operation. Should be zero as no
storage is used.

<guest-source>

The guest’s public key hash.

<guest-signature>

The signature by the guest against
<branch>+<rest-of-operations>. When signing we use a
special watermark that is unique to guest_signature.

<rest-of-operations>

The operations inside can contain operations with guest (=
<guest-source>) as the source. The fees for these operations
will be paid by the host (= <source>).

<signature>

The host’s signature against <branch>+contents. When signing,
the <auth-signature> will be zeroed out.This eliminates the
necessity for the guest to sign before the host, and enables the
host to sign before the guest, or even have both parties sign in

pararell.

Example

Consider a scenario where A (the guest) sends 10 tez to B, and C (the host) covers the
transaction fees in return for 0.1 usdtz. The final operation batch injected to L1 will look like this:

{

branch =<branch>;
contents = |
host{ source=C; counter=47; guest source=A; guest signature=sig A };
tx_AB;
tx_AC;
1;

signature = sig C;

}
Where
tx_ AB = tx{ source=A; counter=3; dst=B; 10tez }
tx AC = tx{ source=A; counter=4; dst=C; 0.1lusdtz }
sig A = signature(signer=A, watermark=’\006”, payload=<branch>+[tx_AB; tx_AC])
sig C = signature(
signer=C,
payload=
<branch>+
[host{source=C; counter=47; guest_source=A; guest_signature=000};
tx_AB;
tx_AC])
Note that:

e sig A by A only signs against the operations after host.

e sig Cby C signs all operations, but with guest_signature zeroed out.

e Both sig_A and sig_C sign payload that includes the <branch>.

e guest_signature is signed with a distinct watermark (using \006 here) to prevent
([tx_AB; tx_AC], guest_signature) from being submitted to the network without
being sponsored.

Batching of multiple guests

Recall the requirement:

e Allow sponsors to sponsor operations from multiple sponsees in one block.

This is crucial because being limited to sponsoring only one sponsee per block would be
unacceptable in terms of throughput.

Unfortunately, the following straightforward solutions will not work:
e The sponsor submits multiple independent sponsored operations in one block.
o This is not possible due to the 1M restriction.
e The sponsor manages multiple accounts and allocates different accounts per sponsee.
o This is not ideal as it increases the workload for sponsors who may not be
experts in blockchains (e.g. Gaming companies)

Hence, to enable sponsoring multiple sponsees in one block, we allow one batch to have
multiple hosts to represent “a batch of guest batches”. When there are multiple host operations
in one batch, each host operation will only take effect until the next host operation.

Look at the example below where sponsor C is sponsoring two sponsees, A and B, within in one
batch. Here

e only tx_1 and tx_2 will be able to have A as the source, and

e the signature sig A will only be against tx_1 and tx_2.

{

branch =<branch>;

contents = [
host{source=C; guest_source=A; guest_signature=sig A };
tx {source=A; ...}; // tx_1
tx {source=A; ...}; // tx 2
host{source=C; guest_source=B; guest_signature=sig B };
tx {source=B; ...}; // tx_3

1;
signature = sig C;

}

OR Semantics

Due to how batch operations are implemented in Tezos, when a transaction from A fails, the
whole batch will fail, including operations from B. This is problematic as B’s operation is now
failing due to an operation that is completely irrelevant to B.

https://gitlab.com/tezos/tezos/-/issues/1789

To solve this, we introduce what we call OR semantics to batches that contain host operations.
With OR semantics, If one sponsee's op fails, we just ignore operations from that sponsee
but keep executing the rest. More concretely, it works as follows:
e \When we encounter a host operation, we save the context at that point and proceed.
e |f an operation fails before the next host, instead of failing the whole batch, we rollback
to the context saved above and continue executing from the next host

Security

Replay Attack

As the guest’s operation will include the counter of the guest, it should not be possible to replay
the operations against the guest’s will.

Operation Withholding Attack

Consider the scenario in which:
1. The sponsee signs an operation,
2. hands it to the sponsor,
3. but the sponsor delays posting the sponsee's operation for a considerable length.

This situation can be problematic, especially in DeFi use cases where the timing of operation
injection plays a crucial role.

This is addressed by requiring:
e The branch to be included in the signature inside host.
o Branches are typically set as the most recent block header hash at the time the
operation was constructed.
e The included branch to be the same as the one used for the sponsor signature.

In the protocol, we consider operations that reference branches that are older than 1 hour to be
invalid, hence sponsored operations should also expire within 1 hour (or shorter if you
intentionally reference an older branch).

Sponsor Bypassing Attack

In our expected user flow, the sponsee first signs their operation and then passes it to the
sponsor with the expectation that the operations will be sponsored prior to injection. But if the
sponsor is malicious, they might attempt to inject the sponsee’s operation without sponsoring it.
This is possible because the guest_signature is signed against branch+operations, hence,
it can be interpreted as a signature for the non-sponsored batch of operations.

To prevent this, we require guest_signature to be signed using a unique watermark that is
specific to guest_signature. This way, the guest_signature will only be a valid signature if
it is within the guest_source operation.

Caveats and Notes

Zero-tez accounts

The protocol requires the allocation of sources of manager operations before executing any
operations with that source. This is problematic as we expect to sponsor accounts that do not
hold any tez.

There are several ways to solve this problem:
e Have the sponsor deposit 1 mutez as a separate transaction before sponsoring any
operations.
o E.g. At the account creation of the game.
e Introduce “ghost accounts” where we enable operations to be executed for unallocated
(or temporary allocated) accounts.

As the latter requires a lot of care and work, we propose to start with requiring the sponsor to
deposit and consider “ghost accounts” in the future if needed.

Gas

The gas for the additional checking of sponsee signatures should be accounted for. l.e. each
host operation should cost at least the gas cost of a signature check.

Replace-by-fee

Tezos supports managers to replace their previous manager operation by submitting an
operation with a higher (in terms of fee/gas) fee. With sponsored operations, who should be
able to do this? It would be weird if a sponsee can nullify the sponsor’s operation batch, which
may contain ops from other sponsees. Hence, only the sponsor should be able to replace the
sponsored batch via replace-by-fee.

Who Sets the Fees?

Suppose we have a sponsored operation (sponsor=A, sponsee=B) that looks like this:

[

host {source=A; guest_source=B; fee=fee 0;};

tx_1 {source=B; fee=fee 1;};
tx_2 {source=B; fee=fee_ 2;};

]

There are two ways to set the fees (fee_0, fee 1, and fee_ 2):
1. The sponsee sets the fees fee_1 and fee_2 based on local simulation. The sponsor
accepts it if it looks legitimate.
2. The sponsee sets the fees fee_1 and fee 2 to zero. The sponsor compensates for
both fees inside fee 0.

The latter sounds more reasonable as it is the sponsor who will pay the fee, but both use cases
are supported in this proposal.

Additionally, note that while the sponsee may not be aware of the fee and can set it to zero, the
same approach cannot be taken for gas and storage limits. This is because gas and storage
limits are accounted for per operation, not batch. Consequently, setting these values to zero
would likely result in operation failure. Although there have been proposals to account for gas
and storage per batch, such effort falls outside the scope of this document.

Multi-party Atomic Operations

The proposed solution supports atomic operations that involve two parties. This can have a
broader use case than just sponsoring operations.

For example, an atomic transfer between of tez and usdtz between A and B can be done with:

[host(source=A; guest_source=B);
tx{source=A; dst=B; 10tez};
tx{source=B; dst=A; 1Qusdtz}]

Note that the proposed solution only supports two-party atomic operations and not general
multi-party atomic operations. This is due to how we handle hosts in batches - Each guest only
signs operations up until the next host, so operations can only be signed by up to two accounts
(the sponsor and the sponsee specified in the previous host) and not more.

Having operations signed by three or more accounts is possible if we enable host to take a list

of pkh * signature instead of just one pkh and one signature. However, it is unclear if it is
worth the added complexity.

Related Work

Past work within Tezos under the name "Metatransactions":

https://forum.tezosagora.org/t/improving-manager-transaction-batches/2027

e Document:

o https://hackmd.io/9Y4hWIP4T1-FUvbREfBCOw
e Milestone:

o https://gitlab.com/metastatedev/tezos/-/issues/107
e MR:

o https://qgitlab.com/tezos/tezos/-/merge requests/2391

Arthur B mentions the idea of multiple managers signing a single batch here:

e Improving manager transaction batches - Research and Development - Tezos Agora
Forum

Similar proposals/implementation in other chains:
e MultiverseX:

o Relayed Transactions ¢ MultiversX Docs
e FEthereum:

o EIP-2711: Sponsored, expiring and batch transactions.
o EIP-2733: Transaction Package
e Polkadot:

o https://qithub.com/paritytech/polkadot-sdk/issues/266

Notes from design call

e Sponsee injects op that conflicts with sponsored batch.
o Allow conflic, but not consider sponsee as manager
m What happens if a sponsored op empties the account?
o How bad?
m When open, cannot have whitelist
o In Mempool, prioritize sponsored , but multiple sponsored op can include
objected
e OR sematics in the batch.
e Sponsee signs the host op (incl the sponsor’s counter)

https://hackmd.io/9Y4hWIP4T1-FUvbREfBC0w
https://gitlab.com/metastatedev/tezos/-/issues/107
https://gitlab.com/tezos/tezos/-/merge_requests/2391
https://forum.tezosagora.org/t/improving-manager-transaction-batches/2027
https://forum.tezosagora.org/t/improving-manager-transaction-batches/2027
https://docs.multiversx.com/developers/relayed-transactions/
https://eips.ethereum.org/EIPS/eip-2711
https://eips.ethereum.org/EIPS/eip-2733
https://github.com/paritytech/polkadot-sdk/issues/266

	Design Doc: Sponsored Operations
	Summary
	Context
	Motivation
	Example Use-cases
	Terminology

	Expected User-flows
	Requirements
	Functional Requirements
	Non-functional Requirements

	Proposed Solution
	Solution: The Host manager operation
	Overview
	Example
	Batching of multiple guests
	OR Semantics

	Security
	Replay Attack
	Operation Withholding Attack
	Sponsor Bypassing Attack

	Caveats and Notes
	Zero-tez accounts
	Gas
	Replace-by-fee
	Who Sets the Fees?
	Multi-party Atomic Operations

	Related Work
	Notes from design call

