

Build Guide
MOJA FLINT LIBRARY

Version 1.0 ● 30 March 2020

www.moja.global

1

Contents

Introduction​ 5

Requirements​ 6

Hardware Requirements​ 6

Software Requirements​ 7

Environment Preparation​ 9

Hardware Preparation​ 9

Operating System Preparation​ 10

Tools Installation​ 13

Libraries Installation​ 17

Instructions​ 19

1. Local Build Instructions​ 19

2. Docker Build Instructions​ 22

Annex A : Hardware Audits Reference​ 30

Annex B : HW Configurations Reference​ 33

Annex C : OS Audits Reference​ 34

Annex D : OS Configurations Reference​ 37

Appendix 1 : Basic Dependencies​ 40

Appendix 2 : Core Dependencies​ 44

Appendix 3: Environmental Variables​ 46

Appendix 4: Keys For Accessing BIOS settings​ 47

Abbreviations​ 48

References​ 49

2

Introduction

The FLINT is an open-source C++ platform that provides tools to integrate multiple data types (including

remote sensing) with FLINT-compatible modules to produce spatially-explicit calculations of greenhouse gas

(GHG) emissions and other variables.

In practice, it is distributed as a library that is either served locally or as a Docker image.

This document provides a step by step guide for building the Moja FLINT Library for both the Local and

Docker Based environments.

3

Requirements

This chapter highlights the hardware and software requirements for building Moja FLINT Libraries:

Hardware Requirements

a)​ Recommended Hardware Specifications

01. Processor Intel Core i7, Minimum, with Virtualization Support

02. RAM 16GB, Minimum

03. Hard Drive 1TB, Minimum

 Refer to the following guides to audit how your hardware stacks against these recommendations:

●​ Annex A1 : Check Processor Capacity

●​ Annex A2 : Check RAM Capacity

●​ Annex A3 : Check Hard Drive Capacity

●​ Annex A4 : Check Support for Virtualization

4

Software Requirements

a)​ Recommended Operating Systems

01. Windows 10 Pro Latest Version

02. Windows 10 Enterprise Latest Version

 Refer to the following guides to audit how your Operating System stacks against these recommendations:

●​ Annex C1 : Check Windows Version Edition

●​ Annex C2 : Check Windows Version Build Number

 Please note that the information on the latest build of Windows 10 can be obtained from this page:

●​ https://support.microsoft.com/en-us/help/4464619/windows-10-update-history

b)​ Required Tools

01. CMake Latest Version

02. Docker Latest Version

03. GIT Latest Version

04. Notepad++ Latest Version

05. Visual Studio Community 2019

5

https://support.microsoft.com/en-us/help/4464619/windows-10-update-history

c)​ Required Libraries

01. Boost Version 1.63.0

02. Eigen Version 3.3.3

03. Moja Latest Version

04. OpenSSL Version 1.1.0

05. POCO Version 1.7.7

06. SQLite Amalgamation Version 3170000

07. Turtle Version 1.3.0

6

Environment Preparation

This chapter highlights how to prepare the environment for building Moja Base Libraries.

Hardware Preparation

a)​ Firmware Virtualization

01. Check if the Firmware Virtualization is enabled

02. Enable it if not

 The following guides have been added as references for carrying out the above task:

●​ Annex A5 : Check Firmware Virtualization Enablement Status

●​ Annex B1 : Enable Firmware Virtualization

7

Operating System Preparation

a)​ Windows Version

01. Check if the Windows version is the latest

02. Update it if not

 The following guides have been added as references for carrying out the above task:

●​ Annex C1 : Check Windows Version Edition

●​ Annex C2 : Check Windows Version Build Number

●​ Annex D1 : Update to the latest version of Windows 10

 Please note that the information on the latest build of Windows 10 can be obtained from this page:

●​ https://support.microsoft.com/en-us/help/4464619/windows-10-update-history

b)​ Administrative Rights

01. Check if the logged in user account has administrative rights

02. Switch to an account that has administrative rights if not

 The following guide has been added as a reference for carrying out the above task:

●​ Annex C4 : Check whether a user account has administrative privileges

8

https://support.microsoft.com/en-us/help/4464619/windows-10-update-history

c)​ Account Password

01. Check if the logged in user account has a password

02. Set it if not

 The following guides have been added as a references for carrying out the above task:

●​ Annex C5 : Check whether a user account has a password

●​ Annex D2: Add a password to a user account

d)​ Windows Hyper-v Features

01. Check whether Windows Hyper-V Features have been turned on

02. Turn them on if not

 The following guides have been added as a references for carrying out the above task:

●​ Annex C6 : Check whether Windows Hyper-V Features have been turned on

●​ Annex D3 : Turn on Windows Hyper-V Features

9

e)​ Port 445

01. Check whether Port 445 is open for TCP connections

02. Open it if not

 The following guides have been added as a references for carrying out the above task:

●​ Annex C7 : Check if port 445 is open for TCP connections

●​ Annex D4 : Open port 445 for TCP connections

10

Tools Installation

 CMake

a) Pre Installation

01. Go to https://cmake.org/download/

02. Download the latest CMake Binary Distribution for Windows

b) Steps

⚠ The following installation steps were written with reference to CMake 3.17.0

01. Right click the CMake installer and select Install

02. Click Next to confirm that you want to proceed with the installation

03. Acknowledge the license terms and Click Next

04. Optionally select the second option to the add CMake to the system PATH for all users

05. Optionally check the last option to create a CMake Desktop Icon

06. Click Next to proceed

07. Leave the install path unchanged to install CMake in the default location

08. Click Next to proceed

09. Click Install to begin the installation

10. Click Finish to exit the installation

11

https://cmake.org/download/

Docker

a) Pre Installation

01. Complete the hardware preparation instructions as described earlier

02. Complete the operating system preparation instructions as described earlier

03. Go to https://www.docker.com/products/docker-desktop

04. Download the Docker Desktop installer for Windows 1

b) Steps

⚠ The following installation steps were written with reference to Docker Desktop 2.2.0.3

01. Right click the Docker Desktop installer and select Run as administrator

02. Wait for Docker Desktop to download the required packages

03. Leave the first checkbox checked to add a Docker Desktop shortcut to your desktop

04. Click OK to proceed

05. Wait for Docker Desktop to unpack its files and install

06. Click Close to exit the installation

1 This step will ask you to sign-in into your docker hub account. If you don’t have one, please sign-up up for free here:
https://hub.docker.com/signup

12

https://www.docker.com/products/docker-desktop
https://hub.docker.com/signup

c) Configuration

⚠ The following configuration steps were written with reference to Docker Desktop 2.2.0.3

01. Double click the Docker Desktop Shortcut to start it

02. Wait for Docker Desktop to notify you that its up and running and then proceed to the next step

03. Go to the System Tray and click the Docker Desktop icon 2 3

04. Select Settings on the pop-up menu

05. Select the Resources menu on the Settings Window

06. Click the Advanced Resource subcategory if not currently selected

07. Increase the Memory available to Docker to at least 4GB

08. Click the File Sharing Resource subcategory

09. Select drive C:\ as the local drive you want to be available to your containers

10. Click Apply & Restart to save the changes

11. Close the settings window after Docker Desktop successfully restarts

3 If you cannot see the Docker Desktop icon at first glance, try looking for it in the pop-up drawer of the System Tray

2 The System Tray is another name given to the Notification Area found at the right-side of the Windows Taskbar.

13

Git

a) Pre Installation

01. Go to https://git-scm.com/downloads

02. Download the latest Git binary release for Windows

b) Steps

⚠ The following installation steps were written with reference to Git 2.26.0

01. Right click the Docker Desktop installer and select Run as administrator

02. Click Install to acknowledge the license terms and carry out the installation

c) Configuration 4

⚠ The following configuration steps were written with reference to Git 2.26.0

01. Open the Windows 10 search tool

02. Search for Windows PowerShell, open it and use it to execute the commands that follow

(i) git config --global user.name "<your_user_name>" (set your global username) 5

(ii) git config --global user.email "<your_email@someservice.com>" (set your global email) 6

6 Replace the content in the angular bracket, including the bracket itself, with your github email

5 Replace the content in the angular bracket, including the bracket itself, with your github username

4 These steps assume that you have a Github Account. If you don’t, please sign up here: https://github.com/join

14

https://git-scm.com/downloads
mailto:your_email@someservice.com
https://github.com/join

Notepad++

a) Pre Installation

01. Go to https://notepad-plus-plus.org/downloads/

02. Download the latest Notepad++ release for Windows

b) Steps

⚠ The following installation steps were written with reference to Notepad++ 7.8.5

01. Right click the Notepad++ installer and select Run as administrator

02. Leave English as the selected language and click OK

03. Click Next to confirm that you want to proceed with the installation

04. Acknowledge the license terms and Click Next

05. Leave the install path unchanged to install Notepad++ in the default location; click Next

06. Leave the selected features unchanged to install the default components; click Next

07. Click Install to carry out the installation

08. Click Finish to complete the installation

15

https://notepad-plus-plus.org/downloads/

Visual Studio

(a) Pre Installation

02. Go to https://my.visualstudio.com/Downloads 7

03. Type Visual Studio Community 2019 in the search downloads field

04. Press Enter and wait for Microsoft to retrieve the desired Visual Studio versions

05. Download the installer of the latest version of Visual Studio Community 2019

(b) Steps

⚠ The following installation steps were written with reference to Visual Studio Community 2019 (V 16.5)

01. Right click the Visual Studio installer and select Run as administrator

02. Click Continue and wait for the installer to prepare for the installation

03. Check the Desktop development with C++ option under the Workloads tab

04. Check the GitHub extension for Visual Studio option under the Individual components tab 8

05. Click Install in the bottom right corner of the screen

06. Wait for the installation to complete then restart the computer

8 The GitHub extension for Visual Studio option is located under the Code tools category

7 This will require you to sign in. You can sign in with any of your Microsoft accounts credentials e.g Skype credentials.
You can alternatively sign in with your Github credentials

16

https://my.visualstudio.com/Downloads

Libraries Installation
Adding the libraries that the Moja FLINT library depends upon into the local environment is vital if you plan

on building the library locally. There are two ways to do this: i) Build the libraries manually into the local

environment or ii) build the libraries into the local environment via the vcpkg tool.

When installing third party libraries we recommend using the vcpkg tool to get it right the first time round.

💡 Important

●​ See Moja Base Libraries Build Guide for instructions on how to build the third party libraries

17

Instructions

1. Local Build Instructions

The Moja FLINT Libraries are usually built into local environments to support the development of or the local

running of Moja FLINT Implementations. This section provides a strategy for acquiring and building the Moja

FLINT Libraries locally.

a) Getting the source code

01. Open the Windows 10 search tool

02. Search for Windows PowerShell and open it

03. Type cd c\ and Enter 9

04. Type New-Item -path "C:\Development\moja-global\" -type directory and Enter 10

05. Type cd "C:\Development\moja-global\" and Enter 11

06. Type git clone https://github.com/moja-global/FLINT.git and Enter 12

12 This will clone Moja’s FLINT repository into the current directory

11 This will change the working directory to "C:\Development\moja-global\"

10 This will create the folder tree "C:\Development\moja-global\" in one line if non-existent

9 This will take you to the root of your c:\ drive if you are not already there

18

b) Building the library

01. Open the Windows 10 search tool

02. Search for Windows PowerShell and open it

03. Type New-Item -path “C:\Development\moja-global\FLINT\Source\build" -type directory and Enter 13

04. Type cd “C:\Development\moja-global\FLINT\Source\build" and Enter 14

05. Type the following command and Enter 15

cmake -G "Visual Studio 16 2019" `
-DCMAKE_INSTALL_PREFIX=C:/Development/Software/moja `
-DVCPKG_TARGET_TRIPLET=x64-windows `
-DENABLE_TESTS=OFF `
-DCMAKE_TOOLCHAIN_FILE=C:\Development\moja-global\vcpkg\scripts\buildsystems\vcpkg.cmake `
 ..

06. You can now use the Visual Studio moja solution to install built versions of the Moja libraries

15 This will create the Visual Studio Solution (2019)

14 This will change the working directory to "C:\Development\moja-global\FLINT\Source\build"

13 This will create the folder tree "C:\Development\moja-global\FLINT\Source\build" in one line if non-existent

19

2. Docker Build Instructions

The FLINT library and all its dependencies can be lumped together and conveniently distributed as a single

Docker image. Officially, such an image is referred to as the Moja FLINT (Library) Image. Subsequent images

that depend upon the FLINT Library i.e Moja FLINT Implementations, can then, with very little effort, extend

this image and gain access to all its functionality.

This section provides a step by step guide on the preparation and building of the Moja FLINT Library Image.

2.1. Starting Off

2.1.1. Specify the Parent Image from which the image should be built:

FROM moja/baseimage:bionic

-​ The FLINT Docker Image should by design extend the Moja Base Image. This is because
the Moja Base Image supplies all the libraries that the FLINT Docker Image needs to
conduct a successful build. Please see the Moja Base Libraries Build Guide for more
information about this.

2.1.2. Add a little metadata to describe the image:

LABEL project="=FLINT Examples"\
 ​ image="FLINT Docker Image"\
 ​ version="1.0"\
 ​ maintainer="Moja Global <info@moja.global>"

-​ It’s considered good practice to add a little description about our images so that users can
learn more about them should they choose to run the “docker inspect” command. This is
typically done through the use of Docker label commands.

2.1.3. Set the image’s frontend to noninteractive:

ARG DEBIAN_FRONTEND=noninteractive

-​ Ubuntu has several interfaces that can be swapped at will. One of these interfaces: The
noninteractive frontend, is considered an anti-frontend. It never interacts with its users at
all. Instead, it chooses default answers for all of the questions asked. This makes it an ideal
candidate for automatic installs.

20

2.1.4. Specify the number of CPUs that can be comfortably allocated for the build process:

ARG NUM_CPU=1

-​ This specification will come in handy when controlling the number of jobs that can be run
concurrently via “make commands”.

2.1.5. Declare FLINT repository variables:

ARG TOKENIZED_FLINT_REPOSITORY_URL
ARG FLINT_REPOSITORY_BRANCH

-​ These should be supplied during build time.

-​ By Tokenized FLINT Repository URL, we mean a URL of the following structure:
https://<Personal_Access_Token>@github.com/moja-global/flint.git

2.1.6. Declare FLINT Data Tools repository variables:

ARG TOKENIZED_FLINT_DATA_REPOSITORY_URL
ARG FLINT_DATA_REPOSITORY_BRANCH

-​ These should be supplied during build time.

-​ By Tokenized FLINT Data Repository URL, we mean a URL of the following structure:
https://<Personal_Access_Token>@github.com/moja-global/FLINT.data.git

2.1.7. Specify the environmental variables needed by the FLINT:

ENV CURL_CA_BUNDLE /etc/ssl/certs/ca-certificates.crt
ENV GDAL_DATA=$ROOTDIR/share/gdal
ENV GDAL_HTTP_MERGE_CONSECUTIVE_RANGES YES
ENV GDAL_HTTP_MULTIPLEX YES
ENV GDAL_HTTP_VERSION 2
ENV LANG=C.UTF-8
ENV LC_ALL=C.UTF-8
ENV LD_LIBRARY_PATH $ROOTDIR/lib:$ROOTDIR/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
ENV PATH $ROOTDIR/bin:$PATH
ENV PYTHONPATH $ROOTDIR/lib:$PYTHONPATH

-​ Appendix: Environmental Variables provides a brief description of all these variables.

21

https://docs.google.com/document/d/11KeANP7UdmKA1-QMhgVsRSSMQvNXp8M4Fh10D-Bl4eU/edit#heading=h.n9urkpvqfb08

2.2. Adding the FLINT Library

2.2.1. Clone FLINT source code from the specified repository branch to a local directory:

RUN cd $ROOTDIR/src \
 && git clone --recursive --depth 1 -b ${FLINT_REPOSITORY_BRANCH} \
 ${TOKENIZED_FLINT_REPOSITORY_URL} moja.flint

 2.2.2 Create a build directory under the repository’s src folder and make it the working directory:

RUN mkdir -p moja.flint/Source/build \
 && cd moja.flint/Source/build

2.2.3. Build and install the FLINT, then clean up the source files:

RUN cmake \
 ​ -DCMAKE_BUILD_TYPE=RELEASE \
 ​ -DCMAKE_INSTALL_PREFIX=$ROOTDIR \
 ​ -DENABLE_MOJA.MODULES.LIBPQ=ON \
 ​ -DENABLE_MOJA.MODULES.GDAL=ON \
 ​ -DENABLE_MOJA.CLI=ON \
 ​ -DENABLE_TESTS:BOOL=OFF .. \
 ​ -DBoost_USE_STATIC_LIBS=OFF \
 ​ -DBUILD_SHARED_LIBS=ON .. \
​ && make --quiet -j $NUM_CPU \
​ && make --quiet install \
​ && make clean \
​ && cd $ROOTDIR \
​ && rm -Rf /usr/local/src/*

2.2.4. Create a symbolic link between /usr/local/bin and the moja modules installed at /usr/local/lib/:

RUN ln -s /usr/local/lib/libmoja.modules.* /usr/local/bin

-​ A symbolic link, also known as a symlink or a soft link, is a special kind of file (entry) that
points to the actual file or directory on a disk.

22

2.3. Adding the FLINT’s Data Tools:

2.3.1. Clone FLINT data source code from the specified repository branch to a local directory:

RUN cd $ROOTDIR/src \
 && git clone --recursive --depth 1 -b ${FLINT_DAT_REPOSITORY_BRANCH} \
 ${TOKENIZED_FLINT_DATA_REPOSITORY_URL} FLINT.data

-​ Please note that the FLINT data repository, though so named, does not contain actual data.
Instead, it contains Python tools to prepare data for the FLINT.

2.3.2. Change the working directory to the cloned repository’s local directory:

RUN cd $ROOTDIR/src/FLINT.data

2.3.3. Build and install the FLINT Data tools, then clean up the source files:

RUN pip3 install .
 && cd $ROOTDIR \
 && rm -Rf /usr/local/src/*

2.4. Saving the image

Save the image as “Dockerfile.flint.bionic”.

-​ Please don’t include the quotes in the image name.

23

2.5. Building the image

2.5.1. Change the working directory to the directory with your Docker file.

-​ If you’ve been following the instructions in the previous chapter: preparing image, then this
is the directory with the file named “Dockerfile.flint.bionic ”.

2.5.2. Run the command below to build the image:

docker build -f Dockerfile.flint.bionic \
 ​ --build-arg TOKENIZED_FLINT_REPOSITORY_URL=[FLINT_URL] \
 ​ --build-arg FLINT_REPOSITORY_BRANCH=[FLINT_BRANCH] \
 ​ --build-arg TOKENIZED_FLINT_DATA_REPOSITORY_URL=[FLINT_DATA_URL] \
 ​ --build-arg FLINT_DATA_REPOSITORY_BRANCH=[FLINT_DATA_BRANCH] \
 ​ -t moja/flint:bionic .

-​ The -f option specifies the name of the docker file to be built - in this case,
“Dockerfile.flint.bionic” .

-​ The -t option specifies the name that the built image should be tagged with - in this case
“moja/flint:bionic”.

-​ The TOKENIZED_FLINT_REPOSITORY_URL argument specifies the URL of the FLINT GIT
Repository with the user’s Personal Access Token pre-appended.
As such, it has the following structure:
https://<Personal_Access_Token>@github.com/moja-global/flint.git.

-​ The FLINT_REPOSITORY_BRANCH argument specifies the branch of the FLINT repository
whose source code should be checked out for the build.

-​ The TOKENIZED_FLINT_DATA_REPOSITORY_URL argument specifies the URL of the
FLINT Data GIT Repository with the user’s Personal Access Token pre-appended.
As such, it has the following structure:
https://<Personal_Access_Token>@github.com/moja-global/FLINT.data.git.

-​ The FLINT_DATA_REPOSITORY_BRANCH argument specifies the branch of the FLINT Data
repository whose source code should be checked out for the build.

-​ The period, “.”, at the end of the command specifies the location of the Docker file to be
built - in this case the current directory.

24

You can optionally update all other variables declared using the ARG directive at the build phase
through the use of the --build-arg option. For example:

docker build -f Dockerfile.flint.bionic \
 ​ --build-arg NUM_CPU=4 \
 ​ --build-arg TOKENIZED_FLINT_REPOSITORY_URL=[FLINT_URL] \
 ​ --build-arg FLINT_REPOSITORY_BRANCH=[FLINT_BRANCH] \
 ​ --build-arg TOKENIZED_FLINT_DATA_REPOSITORY_URL=[FLINT_DATA_URL] \
 ​ --build-arg FLINT_DATA_REPOSITORY_BRANCH=[FLINT_DATA_BRANCH] \
 ​ -t moja/flint:bionic .

25

2.6. Conclusion

This guide illustrated how to prepare and build the Moja FLINT Library Image.

All the code associated with it is available at : https://github.com/moja-global/flint-examples.git.

This is a Docker-based project, so it should be easy to import and use as is

26

https://github.com/moja-global/flint-examples.git

Annex A : Hardware Audits Reference

A1 : Check Processor Capacity

01. Open the Windows 10 search tool

02. Search for the System Information tool and open it

03. Select System Summary menu on the System Information window

04. Look for the Processor specification on the right pane

A2 : Check RAM Capacity

01. Open the Windows 10 search tool

02. Search for the System Information tool and open it

03. Select the System Summary menu on the System Information window

04. Look for the Physical Memory specifications on the right pane

27

A3 : Check Hard Drive Capacity

01. Open the Windows 10 search tool

02. Search for the System Information tool and open it

02. Expand the Components category in the System Information window

03. Expand the Storage subcategory under the Components category

04. Click the Disks subcategory under the Storage subcategory

05. Look for the Size specifications under the disk descriptions 16

A4 : Check Support for Virtualization

01. Open the Windows 10 search tool

02. Search for the Task Manager tool and open it

03. Open the Performance tab on the opened window 17

04. Look for a line that says “Virtualization: (En/Dis)abled” on the bottom-right side of the opened tab

17 You might have to click on More details to see this tab the very first time you open Task Manager

16 Watch out for multiple disk descriptions with different sizes when multiple Hard Drives are present

28

A5 : Check Firmware Virtualization Enablement Status

01. Open the Windows 10 search tool

02. Search for the Task Manager tool and open it

03. Open the Performance tab on the opened window 18

04. Look for a line that says “Virtualization: Enabled” on the bottom-right side of the opened tab

18 You might have to click on More details to see this tab the very first time you open Task Manager

29

Annex B : HW Configurations Reference

B1 : Enable Firmware Virtualization

01. Restart the PC

02. Press the key required to enter BIOs (See Appendix 4: Keys For Accessing BIOS settings)

03. Navigate to either the Advanced, Security or the Systems Configurations tab

04. Select Virtualization or Virtualization Technology and then press the Enter key 19

05. Select Enabled and then press the Enter key

06. Press the F10 key then select Yes and press the Enter key to save the changes and Reboot 20

20 On some Sony PCs, you will need to navigate to a dedicated Exit tab to save changes and exit

19 On some Lenovo PCs, the Virtualization option will be found buried one level deeper under a CPU Setup option

30

Annex C : OS Audits Reference

C1 : Check the Windows Version Edition

01. Open the Windows 10 search tool

02. Search for the System Information tool and open it

03. Select the System Summary menu on the System Information window

04. Look for the OS Name specification on the right pane

C2 : Check the Windows Version Build Number

01. Open the Windows 10 search tool

02. Search for the System Information tool and open it

03. Select the System Summary menu on the System Information window

04. Look for the Version specification on the right pane

C3 : Check for the latest Windows Operating System

01. Open https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

02. Look for the latest Windows Version, Edition and Build Number

31

https://en.wikipedia.org/wiki/List_of_Microsoft_Windows_versions

C4 : Check whether a user account has administrative privileges

01. Open the Windows 10 search tool

02. Search for the Manage your account tool and open it

03. Look for the word "Administrator" underneath the account name

C5 : Check whether a user account has a password

01. Open the Windows 10 search tool

02. Search for the Manage your account tool and open it

03. Click the Sign-in options on the left pane of the opened window

04. Scroll down to the Password section on the right pane of the opened window

05. Look for a statement that says "Sign in with your account’s password" underneath it

C6 : Check whether Windows Hyper-V features are turned on

01. Open the Windows 10 search tool

02. Search for the Turn Windows features on or off tool and open it

03. Locate the Hyper-V section and find out if it’s checked

32

C7 : Check if port 445 is open for TCP connections

01. Open the Windows 10 search tool

02. Search for the Windows Defender Firewall tool and open it

03. Click Advanced settings on the left pane of the Windows Defender Firewall window

04. Click the Inbound Rules category on the left pane of the newly popped up window

05. Locate the Local Port column on the newly opened Inbound Rules table

06. Scroll down this Local Port column and see whether there’s a TCP entry for port 445

07. Click the Outbound Rules category on the left pane of the newly popped up window

08. Locate the Remote Port column on the newly opened Outbound Rules table

09. Scroll down this Remote Port column and see whether there’s a TCP entry for port 445

33

Annex D : OS Configurations Reference

D1 : Update to the latest version of Windows 10

01. Go to https://www.microsoft.com/en-us/software-download/windows10

02. Click the Update now button to download the Windows 10 Update Assistant

03. Right click the downloaded Windows 10 Update Assistant and select Run as administrator

04. Click Update Now on the newly opened window

05. Click Next after the PC is ascertained as being compatible with the update

06. Click Minimise to optionally have the update run in the background

07. Click Restart now to restart your PC when the update is complete

D2 : Add a password to a user account

01. Open the Windows 10 search tool

02. Search for the Manage your account tool and open it

03. Click the Sign-in options on the left pane of the opened window

04. Scroll down to the Password section on the right pane of the opened window

05. Click the Add button underneath it

06. Enter the password and password hint details and click Next

07. Click Finish

34

https://www.microsoft.com/en-us/software-download/windows10

D3 : Turn on Windows Hyper-V features

01. Open the Windows 10 search tool

02. Search for the Turn Windows features on or off tool and open it

03. Locate the Hyper-V section

04. Check it and click OK

05. Click Restart now to finish installing the requested changes

35

D4 : Open port 445 for TCP connections

01. Open the Windows 10 search tool

02. Search for the Windows Defender Firewall tool and open it

03. Click Advanced settings on the left pane of the Windows Defender Firewall window

04. Click the Inbound Rules category on the leftmost pane of the newly popped up window

05. Click the New Rule option on the rightmost pane of the newly popped up window

06. Select Port as the type of rule to be created

07. Click Next

08. Select TCP as the protocol of the rule to created

09. Select Specific local ports and enter 445 as the port that the rule should be apply to

10. Click Next

11. Select Allow the connection as the action to take when a connection matches the conditions

12. Check Domain, Private and Public to have the rule apply to each of these profiles

13. Click Next

14. Enter Docker as the name of the rule and click Finish

15. Repeat Steps 04 to 14 for Outbound Rules

36

Appendix 1 : Basic Dependencies

Dependency About

bash-completion Programmable completion for the bash shell.

This package extends bash's standard completion behavior to achieve
complex command lines with just a few keystrokes. It was conceived to
produce programmable completion routines for the most common
Linux/UNIX commands, reducing the amount of typing sysadmins and
programmers need to do on a daily basis.

build-essential Informational list of build-essential packages.

This package contains an informational list of packages which are
considered essential for building Debian packages. It also depends on the
packages on that list, to make it easy to have the build-essential packages
installed.

doxygen Documentation generation tool.

Doxygen is a documentation system for C, C++, Java, Objective-C, Python,
IDL and to some extent PHP, C#, and D. It can generate an on-line class
browser (in HTML) and/or an off-line reference manual (in LaTeX) from a set
of documented source files.

doxygen-latex Doxygen dependency package.

Adds dependencies for all LaTeX packages required to build documents
using the default stylesheet. ​

git Fast, scalable, distributed version control system.

This package provides the git main components with minimal
dependencies.

gdb GNU Debugger.

GDB is a source-level debugger, capable of breaking programs at any
specific line, displaying variable values, and determining where errors
occurred. Currently, gdb supports C, C++, D, Objective-C, Fortran, Java,
OpenCL C, Pascal, assembly, Modula-2, Go, and Ada. A must-have for any
serious programmer.

graphviz Open source graph visualization software.

Graph visualization is a way of representing structural information as
diagrams of abstract graphs and networks. This package contains graph
visualization command-line tools.

37

libcurl4-gnutls-dev Development files and documentation for libcurl (GnuTLS flavour).

libcurl is an easy-to-use client-side URL transfer library, supporting DICT,
FILE, FTP, FTPS, GOPHER, HTTP, HTTPS, IMAP, IMAPS, LDAP, LDAPS,
POP3, POP3S, RTMP, RTSP, SCP, SFTP, SMTP, SMTPS, TELNET and TFTP.
libcurl supports SSL certificates, HTTP POST, HTTP PUT, FTP uploading,
HTTP form based upload, proxies, cookies, user+password authentication
(Basic, Digest, NTLM, Negotiate, Kerberos), file transfer resume, http proxy
tunneling and more.

libeigen3-dev Lightweight C++ template library for linear algebra.

Eigen 3 is a lightweight C++ template library for vector and matrix math,
a.k.a. linear algebra. Unlike most other linear algebra libraries, Eigen 3
focuses on the simple mathematical needs of applications.

libgeos-dev Geometry engine for GIS.

GEOS provides a spatial object model and fundamental geometric
functions. It implements the geometry model defined in the OpenGIS
Consortium Simple Features Specification for SQL.

libhdf4-alt-dev Hierarchical Data Format development files (without NetCDF).

HDF is a multi-object file format for storing and transferring graphical and
numerical data mainly used in scientific computing. HDF supports several
different data models, including multidimensional arrays, raster images,
and tables. Each defines a specific aggregate data type and provides an
API for reading, writing, and organizing the data and metadata.

libhdf5-serial-dev Packages providing libhdf5-serial-dev

This is a virtual package.

libnetcdf-dev Creation, access, and sharing of scientific data.

NetCDF (network Common Data Form) is a set of interfaces for
array-oriented data access and a freely distributed collection of data
access libraries for C, Fortran, C++, Java, and other languages. The
netCDF libraries support a machine-independent format for representing
scientific data. Together, the interfaces, libraries, and format support the
creation, access, and sharing of scientific data.

libpoppler-dev PDF rendering library.

Poppler is a PDF rendering library based on Xpdf PDF viewer.

libpq-dev Header files for libpq5 (PostgreSQL library).

Header files and static library for compiling C programs to link with the
libpq library in order to communicate with a PostgreSQL database
backend.

libproj-dev Cartographic projection library.

38

Proj and invproj perform respective forward and inverse transformation of
cartographic data to or from Cartesian data with a wide range of selectable
projection functions (over 100 projections).

libspatialite-dev Geospatial extension for SQLite.

The SpatiaLite extension enables SQLite to support spatial (geometry) data
in a way conformant to OpenGis specifications, with both WKT and WKB
formats.

libssl-dev Secure Sockets Layer toolkit.

This package is part of the OpenSSL project's implementation of the SSL
and TLS cryptographic protocols for secure communication over the
Internet. It contains development libraries, header files, and manpages for
libssl and libcrypto.

libxml2-dev Development files for the GNOME XML library.

XML is a metalanguage to let you design your own markup language. A
regular markup language defines a way to describe information in a
certain class of documents (eg HTML). XML lets you define your own
customized markup languages for many classes of documents. It can do
this because it's written in SGML, the international standard metalanguage
for markup languages.

nasm General-purpose x86 assembler.

Netwide Assembler: NASM will currently output flat-form binary files, a.out,
COFF and ELF Unix object files, and Microsoft 16-bit DOS and Win32
object files.

openssl Secure Sockets Layer toolkit - cryptographic utility.

This package is part of the OpenSSL project's implementation of the SSL
and TLS cryptographic protocols for secure communication over the
Internet. It contains the general-purpose command line binary
/usr/bin/openssl, useful for cryptographic operations.

postgis Geographic objects support for PostgreSQL.

PostGIS adds support for geographic objects to the PostgreSQL
object-relational database. In effect, PostGIS "spatially enables" the
PostgreSQL server, allowing it to be used as a backend spatial database
for geographic information systems (GIS).

postgresql-client-10 Front-end programs for PostgreSQL

This metapackage always depends on the currently supported database
client package for PostgreSQL.

python3-dev Header files and a static library for Python (default).

39

Header files, a static library and development tools for building Python
modules, extending the Python interpreter or embedding Python in
applications.

python3-numpy Fast array facility to the Python 3 language.

Numpy contains a powerful N-dimensional array object, sophisticated
(broadcasting) functions, tools for integrating C/C++ and Fortran code, and
useful linear algebra, Fourier transform, and random number capabilities.

python3-pip Python package installer.

pip is the Python package installer. It integrates with virtualenv, doesn't do
partial installs, can save package state for replaying, can install from
non-egg sources, and can install from version control repositories.

software-properties-common Manages the repositories that you install software from (common).

This software provides an abstraction of the used apt repositories. It allows
you to easily manage your distribution and independent software vendor
software sources.

sqlite3 Command line interface for SQLite 3.

SQLite is a C library that implements an SQL database engine. Programs
that link with the SQLite library can have SQL database access without
running a separate RDBMS process.

wget Retrieves files from the web.

Wget is a network utility to retrieve files from the web using HTTP(S) and
FTP, the two most widely used internet protocols. It works
non-interactively, so it will work in the background, after having logged off.
The program supports recursive retrieval of web-authoring pages as well
as FTP sites.

40

Appendix 2 : Core Dependencies

Dependency About

boost Free, peer-reviewed, portable C++ source libraries.

boost libraries are a collection of C++ libraries that provide support for
standard tasks and structures such as linear algebra, pseudorandom
number generation, multithreading, image processing, regular
expressions, and unit testing..

cmake Build process manager.

CMake is an open-source, cross-platform family of tools designed to build,
test and package software.

fmt A modern formatting library.

{fmt} is an open-source formatting library for C++ that can be used as a
safe and fast alternative to (s)printf and iostreams

gdal Raster and Vector translation library.

GDAL is a translator library for raster and vector geospatial data formats
that is released under an X/MIT style Open Source License by the Open
Source Geospatial Foundation.

poco C++ libraries for building network- and internet-based applications.

The POrtable COmponents (POCO) C++ Libraries are a set of
cross-platform C++ libraries for developing computer network-centric,
portable applications in C++.

rabbitmq-c This is a C-language AMQP client library for use with v2.0+ of the
RabbitMQ broker.

RabbitMQ is an open-source message-broker software that originally
implemented the Advanced Message Queuing Protocol (AMQP) and has
since been extended with a plug-in architecture to support Streaming Text
Oriented Messaging Protocol (STOMP), Message Queuing Telemetry
Transport (MQTT), and other protocols.

SimpleAmqpClient C++ wrapper around the rabbitmq-c C library

SimpleAmqpClient is an easy-to-use C++ wrapper around the rabbitmq-c C
library

sqlite Database engine.

41

SQLite is a C-language library that implements a small, fast, self-contained,
high-reliability, full-featured, SQL database engine.

turtle Mock object library.

Turtle is a C++ mock object library based on Boost with a focus on
usability, simplicity and flexibility.

zipper C++ wrapper around minizip compression library.

Zipper is a reliable, simple and flexible compression library that supports
all kinds of inputs and outputs. Moreover it allows the compression of files
into memory instead of being restricted to file compression only, and using
data from memory instead of just files as well.

42

Appendix 3: Environmental Variables

Variable About

CURL_CA_BUNDLE CURL_CA_BUNDLE is an environmental variable used to specify a custom
Certificate Authority (CA) certificate path.

GDAL_DATA GDAL_DATA is an ​environment variable used to specify location of
supporting files used by GDAL libraries as well as GDAL and OGR utilities.

GDAL_HTTP_MERGE_
CONSECUTIVE_RANGES

GDAL_HTTP_MERGE_CONSECUTIVE_RANGES is an ​environment variable
used to specify if ranges of a single ReadMultiRange request that are
consecutive should be merged into a single request

GDAL_HTTP_MULTIPLEX GDAL_HTTP_MULTIPLEX is an ​environment variable used to specify if
multiplexing can be used to download multiple ranges in parallel, during
ReadMultiRange requests that can be emitted by the GeoTIFF driver

GDAL_HTTP_VERSION GDAL_HTTP_VERSION is an ​environment variable used to specify which
HTTP version to use

LANG LANG is an ​environment variable used to specify a locale

LC_ALL LC_ALL is an ​environment variable used to override all LC_xxx environmental
variables. LC_xxx environment variables e.g. LC_CTYPE, LC_NUMERIC,
LC_TIME, LC_COLLATE, LC_MONETARY, LC_MESSAGES, and so on, are the
environment variables meant to override LANG and affect a single locale
category only

LD_LIBRARY_PATH LD_LIBRARY_PATH is an ​environment variable used to specify a list of
directories in which to search for Executable and Linkable Format (ELF)
libraries at execution time

PATH PATH is an ​environment variable used to specify to the shell which directories
to search for executable files (i.e., ready-to-run programs) in response to
commands issued by a user

PYTHONPATH PYTHONPATH is an ​environment variable used to specify additional
directories where python will look for modules and packages

43

Appendix 4: Keys For Accessing BIOS settings

Manufacturer F1 F2 F3 F6 F10 F11 F12 ESC INS DEL

Acer A C C

Asus C A A

DELL A C A A A

HP A A A C A A C

Lenovo C C

Sony A C C

Toshiba A C A

Where C = Most Common and A = Alternative

44

Abbreviations

Abbreviation Meaning

CEIP Customer Experience Improvement Program

CPU Central Processing unit

FLINT Full Lands Integration Tool

HW Hardware

OS Operating System

RAM Random Access Memory

TCP Transmission Control Protocol

URL Uniform Resource Locator

45

References

Basic Dependencies:

Ubuntu Packages https://packages.ubuntu.com/

Core Dependencies:

Boost C++ Libraries https://www.boost.org/

CMake https://cmake.org/

fmtlib/fmt https://github.com/fmtlib/fmt

GDAL https://gdal.org/

POCO https://pocoproject.org/

RabbitMQ C https://github.com/alanxz/rabbitmq-c

SimpleAmqpClient https://github.com/alanxz/SimpleAmqpClient

SQLite https://www.sqlite.org/index.html

Turtle http://turtle.sourceforge.net/

Zipper https://github.com/sebastiandev/zipper

46

https://packages.ubuntu.com/
https://www.boost.org/
https://cmake.org/
https://github.com/fmtlib/fmt
https://gdal.org/
https://pocoproject.org/
https://github.com/alanxz/rabbitmq-c
https://github.com/alanxz/SimpleAmqpClient
https://www.sqlite.org/index.html
http://turtle.sourceforge.net/
https://github.com/sebastiandev/zipper

	Build Guide
	
	Contents
	Introduction
	Requirements
	Hardware Requirements
	a)​Recommended Hardware Specifications

	Software Requirements
	a)​Recommended Operating Systems
	b)​Required Tools
	c)​Required Libraries

	Environment Preparation
	Hardware Preparation
	a)​Firmware Virtualization

	
	
	Operating System Preparation
	a)​Windows Version
	b)​Administrative Rights
	c)​Account Password
	d)​Windows Hyper-v Features
	e)​Port 445

	Tools Installation
	 CMake
	Docker
	Git
	Notepad++
	Visual Studio

	Libraries Installation

	Instructions
	1. Local Build Instructions
	2. Docker Build Instructions
	2.1. Starting Off
	2.2. Adding the FLINT Library
	2.3. Adding the FLINT’s Data Tools:
	2.4. Saving the image
	2.5. Building the image

	
	
	
	
	2.6. Conclusion

	Annex A : Hardware Audits Reference
	A1 : Check Processor Capacity
	A2 : Check RAM Capacity
	A3 : Check Hard Drive Capacity
	
	A4 : Check Support for Virtualization
	

	
	
	A5 : Check Firmware Virtualization Enablement Status

	

	Annex B : HW Configurations Reference
	
	B1 : Enable Firmware Virtualization

	

	Annex C : OS Audits Reference
	
	C1 : Check the Windows Version Edition

	
	C2 : Check the Windows Version Build Number
	C3 : Check for the latest Windows Operating System
	C4 : Check whether a user account has administrative privileges

	
	C5 : Check whether a user account has a password
	C6 : Check whether Windows Hyper-V features are turned on
	C7 : Check if port 445 is open for TCP connections

	
	
	

	Annex D : OS Configurations Reference
	
	D1 : Update to the latest version of Windows 10
	D2 : Add a password to a user account
	D3 : Turn on Windows Hyper-V features

	
	D4 : Open port 445 for TCP connections

	Appendix 1 : Basic Dependencies
	
	Appendix 2 : Core Dependencies
	
	
	Appendix 3: Environmental Variables
	Appendix 4: Keys For Accessing BIOS settings
	Abbreviations
	
	References
	Basic Dependencies:
	
	Core Dependencies:

