Performance Comparison of Neural
Networks using Keras and PyTorch

CS/EE 147: GPU Computing and Programming Final Project

Team Name:
2EEs 1CS 404 NOT FOUND!

Team Members:

Estevan Valencia Rivera (861211373)
Yash Patel (SID: 861215968)

Venkat Prathipati (861209938)

Table of Contents:

Project Overview

GPU Acceleration
Documentation on code execution
Evaluation/Results

Problems Faced

Conclusion

References

Presentation

17
17
17
18
18

Project Overview

A graphics processing unit (GPU) is a specialized electronic hardware designed for
specialized display functions. Due to their architecture, they have seen usage beyond that. A
GPU performs parallel operations and this makes them the perfect hardware for Image
Processing, Data analysis, Machine Learning and Neural Networks (NN). The objective of this
project was to implement and evaluate the performance of neural networks using two different
frameworks: Keras and PyTorch. We extended the dataset implementation in Keras by using our
own dataset to recognize faces.

GPU Acceleration

GPU-accelerated computing is the employment of a graphics processing unit (GPU)
along with a computer processing unit (CPU) in order to facilitate processing-intensive
operations such as deep learning, analytics and engineering applications. In this project the
Facial Recognition pipeline uses algorithms and techniques such as the parallel algorithm to
normalize data and improve our recognition capabilities. Parallel algorithm can be executed a
piece at a time on many different processing devices, and then is combined together again to get
the correct result.

Keras uses cuDNN is an NVIDIA library designed specifically to speed up the training
aspect of neural networks using a GPU. In PyTorch, the model gets moved onto the GPU and
just that can result in a performance gain but in the future we would imagine that moving the
data (images) onto the GPU will also result in increased performance. Since NNs are heavily
image based and have many number of nodes, we can intuitively state that a GPU will be much
better performance than a CPU due to the ability of parallelization of the network.

Implementation Details

Data Collection for Facial Recognition:

Before training our neural networks to detect faces using either framework, we decided to
create our own test data to train neural networks. In order to get great training data, we decided
to implement the OpenCYV library implementation for facial detection. OpenCV is an open
source computer vision and machine learning software library. The library has algorithms to
detect and recognize faces, identify objects, camera movements and etc.

We used the library to capture images of ourselves through the computers built-in
camera. Using color detector to convert image to gray and then resize the image to fit just the

face of the person in the image. We then align the faces in the images by using the Facial Aligner
library. Once the program was ready, we took 200 training images for each person and around 10
test images. All the images only have the face in the image with some features such as hair and
ears cropped out. The image to the left was the original, and it outputs two separate images(to the
right). These training and test images were used for steps to follow.

Neural Networks Using Keras:

Keras is a high level API that is written in Python. Keras can use various backends like
Tensor Flow, CNTK, and Theano. For our project we used TensorFlow because it was familiar to
us since we had a lecture on it. Another benefit of Keras is that it allows us to easily select
between the CPU or GPU. Keras was installed in one of our home desktops with a GTX 1060
GPU.

For any NN you need a dataset to train it. While we were getting familiar with neural
networks we used the MNIST Handwritten Digit Dataset. This data set has 60,000 28x28 images
that are used to train the NN. It also has 10,000 images to test the NN. For the NN to classify the
Handwritten Digits we used a 3 Layer NN. The first layer does not really count as a layer as it
only flattens the matrix into a vector. The first real layer is a Dense layer with a size of 128 and
an activation function of Rectified Linear (RELU). The second layer is exactly like the first layer
a Dense layer with a size of 128 and an activation function of RELU. The final layer is another
Dense layer with a size of 10, it is 10 because there are 10 possible digits that could be written.
This layer uses a softmax activation function to finally classify the digit.

Dataset CPU Runtime Avg. GPU Runtime Avg.
MNIST Digits 35s 55s
MNIST Fashion 45s 6.5s

Figure 1: Computation Time for 3 layer NN

So we test the above NN on two datasets and on both the CPU was able to train the NN
about 1 second faster per epoch than the GPU. We then Created a NN that did not make the
accuracy better but it increases the computation needed to be done to train the NN. We added 10

Dense layers each with a size of 1024. This was only done to compare the computation time
between the CPU and GPU.

Dataset CPU Runtime Avg. GPU Runtime Avg.

MNIST Digits 312s 31s

MNIST Fashion 320 s 31s

Figure 2: Computation Time for 10 layer NN
As seen in Figure 2, when the computation for the NN gets extremely large like in more
complex NN the GPU is much more efficient in training the NN.

Convolutional Neural Networks Using Keras:

We then used Keras again to create facial reconition NN that was able to distinguish
between two people. We created our own dataset as described above. The NN consisted of two
Convolutional Layer both using the Relu activation function. After each convolutional layer we
down sample the image using a Max Pooling layer. We then Flatten the data and pass it through
two Dense layer to classify it. It is also passed through a Dropout layer to get rid of some of the
feature to prevent over fitting. We did not compare the performance between the GPU and the
CPU because it was a relatively small NN in which the CPU performed a little better. The GPU
trained each epoch in about 3 seconds, this was also due to the fact that our face data set was
pretty small.Only 200 pictures of each person.

We tested the NN with 32 images and of the 32 images the NL classified two images
incorrectly. This means that our NN has about a 94% accuracy. There is a possibility of over
training but we tested with images taken in different conditions as the training data.

Estevan Estevan Yash Estevan Estevan

Neural Networks Using PyTorch:

PyTorch is a machine learning library for Python used for a variety of applications such
as artificial intelligence, natural language processing and neural networks. PyTorch provides two
main high level features: tensor computing with GPU acceleration and construction of neural
networks using automatic differentiation. For this project, PyTorch was used to construct a
multi-layered Convolutional Neural Network (CNN) and it was trained on a GPU and a CPU to
observe performance differences between the two. The CPU used for testing was an Intel
15-6600K and the GPU used was a NVIDIA GeForce GTX 1060 6GB.

To begin creating the model, the first step is to import the following libraries: pytorch,
torchvision, and numpy. To keep testing consistent, the same dataset was utilized in both Keras
and PyTorch based models. The Fashion Modified National Institute of Standards and
Technology (MNIST) dataset created by Zalando Research was used on this CNN. It contains
60,000 28x28 grayscale images for training and 10,000 28x28 grayscale images for testing.
Figure N shows images from the Fashion MNIST dataset. PyTorch is often installed with a few
datasets preloaded and so the next step is to import the test and the training datasets into the
workspace. A sample of the dataset is shown in Figure N.

grid = torchvision.utils.make_grid(images, nrow=18)"
plt.figure(figsize = (15,15))
plt.imshow(np.transpose(grid, (1,2,8)))
print('labels:"',labels)

labels: tensor([9, @, @, 3, @, 2, 7, 2, 5, 5])

Figure 3: Fashion MNIST Dataset Sample

After importing the libraries and the datasets, the following hyperparameters are
initialized: epochs, classes, batch size and learning rate. The importance and description of each
can be found in the code snippet provided in the Documentation portion of the report. The design
of the model for this project is an extremely common one for this dataset. Figure 4 shows the
structure and layers of the CNN, it contains a total of 6 layers: 2 convolutional layers, 2 Max
Pooling layers, 1 fully connected layer and linput layer. The next step in the creation of the
network is the loss function that helps a CNN prediction increase through each iteration. For our
case, we used the cross-entropy loss function, the graph of which is shown in Figure 5.

SAME SAME
PADDING DOWN- PADDING DOWN-
FEATURE SAMPLED FEATURE SAMPLED
INPUT MAPS FEATURE MAPS FEATURE LOGITS SOFTMAX LABELS
9 Max MAPS 5 Max MAPS LINEAR CROSS

Convolution = Convolution 5 SOFTMAX
Pooll Pooll FUNCTION ENTROPY
ooling ooling FUNCTION FUNCTION

co::;elr‘zion ‘ ’ Mi’;’;‘:‘:"z"g | Readout Layer (Fully Connected Layer)

Figure 4: Block Model of CNN

Lo Log Loss when true label = 1

log loss

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Figure 5: Cross-Entropy Loss Function

The model has been created and now it needs to be initialized and trained. The
initialization is extremely easy and can be seen in the code snippet. Training of a CNN is
basically performing forward propagation, calculating the loss and then performing backward
propagation to use the gradients to update the parameters. After training the model, it was tested
against the testing dataset. The final changes to the code were for the syntax when changing the
execution device from the CPU to the GPU. Table 6 exhibits the performance increase in not

only the training of the network but also the testing of it.

CPU GPU
Training Time 486.193 s 80.487 s
Model Accuracy 85.9% 88.62%
Testing Time 4.004s 1.169s

Table 6: GPU vs CPU performance of CNN using PyTorch

The results show around 6x time reduction when using a GPU for training a CNN
compared to a CPU. We also see a time reduction when using a GPU for testing the CNN. That
may prove useful in real world applications like autonomous vehicles where the input is
essentially the real world images and having a reduced time would benefit the car in making
quicker decisions. We see an increase in model accuracy for the GPU but after running the

scripts several times, it is not definitive if the GPU has an advantage over the CPU. The results
we got could be attributed to the random seed for the initialization of the CNN.

Documentation on code execution

Facial Detection using OpenCV(Training Data/Test Data):

o5, dlib, imutils
imutils.face utils t FaceAligner
imutils.face utils t rect_to bb

ligner(predictor, d

= wvideo_capture.read()
i ', Frame)

cw2.COLOR_BGR2GRAY)

rects:
{x, ¥, w; h} = rect _bb{rect)
imutils C:x+w], width=128}

lastImg

lastImg

lastImg =

i+=1

cv2. imwrite "3 ed.jpg™ % i), lastImg) #

wailtKey (@) & @x
wit()
rAllWindows ()

MNIST Fashion and Handwritten Digits Neural Network

impeort os

#os.environ["CUDA_VISIBLE DEVICES"] = "-1" #making this -1 runs it on the cpu making it empty runs it on gpu
import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

mnist = tf.keras.datasets.fashion mnist #change this to download the different MNSIT data
(2_train,y_train), (x_test,y test) = mnist.load_data()
In[8]:

®_train = tf.keras.utils.normalize(x_train, axis=1)

x%_test = tf.keras.utils.normalize(x_test, axis=1)

In[9]:

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense (128, activation=tf.nn.reslu))
model.add(tf.keras.layers.Dense (128, activation=tf.nn.reslu))

model.add(tf.keras.layers.Dense (10, activation=tf.nn.softmax)) #output layer should have number of classes
model.compile (optimizer='adam', loss='sparse categorical crossentropy',metrics=['accuracy'l])
model.fit(x train,y train,epochs=3)

In[10]:

val loss, val acc = model.evaluate(x test, y test)
print(val loss, val acc)

This can be run as a simple python script, if everything is already downloaded onto the system
the program will automatically download the dataset since it is part of the Keras Framework.
This can also be run on Jupyter Notebook using the included file. To run it on the CPU you must
set os.environ["CUDA_VISIBLE DEVICES"] =“-1”to -1.

Facial Recognition using a Convolutional Neural Network

from keras.preprocessing.image import ImagsDataGenerator
import numpy as np

impert tensorflow as tf

import matplotlib.pyplot as plt

import os

import cv2

import random

IMG_SIZE
DATADIR =

uments/147/Data" #this is the location the test data which has the data in seprate folders
CATEGORIES #these are the folders that hold the taining data
CATEGCORIES2 = ’ #these folders hold the test data
In[2]: This section imports the Training data labels it and shuffles it
training_data = []
ldef creat_training_data():
1 for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
1 for img in os.listdir (path):
img array = cv2.imread(os.path.join(path,img), cv2.IMREAD GRAYSCALE)
new array = cv2.resize(img_array, (IMG SIZE,IMG_SIZE))
: training_data.append([new_array,class_num])

creat training data()

random.shuffle(training_data)

=1

¥ =[1

1for features, label in training data:
X.append(features)

- Y.append(label)

B

= np.array(X) .reshape(-1,IMG SIZE,IMG SIZE,1)
X = tf.keras.utils.normalize (X, axis=l)
In[3]:# In[2]: This section imports the Testing data labels it and shuffles it

W

test_data =[]
ldef creat_test data():
1 for category in CATEGORIESZ:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES2. index (category)
1 for img in os.listdir (path):
img array = cv2.imread(os.path.join(path,img), cv2.IMREAD GRAYSCALE)
new array = cv2.resize(img_array, (IMG SIZE,IMG_SIZE))
- test_data.append([new_array,class_num])

creat_test_data()

random.shuffle(test_data)

Xt =[]

¥t = []

ifor features, label in test_data:
Xt.append(features)

2 Yt.append(label)

.array (Xt} .reshape(-1,IMG SIZE,IMG SIZE,l)
.keras.utils.normalize (Xt, axis=l)
This is the NN model used to reconize the faces
model = tf.keras.models.Sequential()
model.add (tf.keras.layers.Conv2D(é4, kernel size = (3,3), input_shape =(IMG_SIZE,IMG SIZE,k1)))
model.add(tf.keras.layers.Activation("relu"))
model.add (tf.keras.layers.MaxPooling2D(pool_size=(2,2)))

model.add(tf.keras.layers.Conv2D(64, kernelisize = (3,3)))
model.add(tf.keras.layers.Activation("relu"))
model.add (tf.keras.layers.MaxPooling2D(pool_size=(2,2)))

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64))
model.add(tf.keras.layers.Dropout(.1l))
model.add(tf.keras.layers.Dense (1))
model.add(tf.keras.layers.Activation ("

,metrics=['ac

model.compile (optimizer='adam', loss='binary

model.fit(X,Y,batch_size =1, epochs=2)

4 In[5]: This outputs the testing data with the name of who it thinks it is

predictions = model.predict ([Xt])

Jfor i in range(36):

] if predictions[i] > .5:
print("Yash")
plt.imshow (¥tt[i],cmap=

- plt.show()

1 elif predictions[i] > 0:
print("Estevan")
plt.imshow (X¥tt[i],cmap=

- plt.show()

val loss, val acc = model.evaluate (Xt, Yt)
print(val_loss, val_acc)

Since for this we used our own dataset it requires us to load and label the data into the program.
The variable DATADIR should be changed to the location of the folder that holds the multiple
folders of the different people. CATEGORIES should be changed to the names of the folders that
holds the data you want to use to train. CATEGORIES2 should be changed to the names of the
folders that holds the data you want to use to test. Once those variables are changed it can be run
as a simple python script assuming everything has been installed on the system. This can also be
run on Jupyter Notebook using the included file. To run it on the CPU you must set
os.environ["CUDA_VISIBLE DEVICES"]| =“-1"to -1.

PyTorch CPU Full Code:

4p Final CPU.py

torch
torchvision
numpy np
matplotlib.pyplot plt
torchvizion.transforms transforms
torchvision.datasets datasets
torch.nn nn
torch.nn.functional F

torch. autograd Variable
torch.optim optim
time

print(torch._ version_)
print(torchvision._ version_)

transform - transforms.Compose([transforms.ToTensor()])

train_set = torchvision.datasets.FashionMNIST(
i ' . fdatafFashionMNIST",

transforms.Compose ([
transforms. ToTensor()

m

test_dataset - datasets.FashionMN ot="./data/FashionMNIST",

num_epochs
num_classes
batch_size
learning_rate

train_loader = torch.utils.data.Dataloader(dotaset-train set,
batch_size,

ue)

test loader - torch.utils.data.Dataloader(dotaset-test dataset,
t batch_size,

11

class Network{mn]
def init_ (self):
super{Network, s

nn.Conv2d(in_channels=1, out channels=16, kernel 3, stride=1, padding=2
nn.Conv2d (i 1 stride=1, pac

nn.RelU()
nn.ReLU()

-maxpooll = nn.MaxPool2d(kernel_
]

f.maxpool2 = nm.MaxPool2d(kerne
self.dropout = nn.Dropout(

nn.Linear

.cnnl(x))
self.maxpooll(t)
self.relu; Lf.cnn2(t))
self.maxpool2(t)

t.vi

12

4» Final CPU.py

self.fcl{t)
t

model = Network()
criterion = nn.CrossEntropyloss()
optimizer = optim.Adam(model.parameters(), Lr=learning_rate)

iteration
18 = time.time()
epoch range (num_epochs):
i, (images, labels) enumerate{train_loader):
images - Variable(images)
labels = Variable(labels)

optimizer.zero_grad()

outputs - model(images)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

iteration iteration 1;
total = labels.size(@)
_ 5 predicted - torch.max(outputs.data, 1)

correct = (predicted labels).sum().item(}

(i 1) 1ee a:
print(‘Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%"
.format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item(),
(correct / total) 124))

print("{} seconds'.format(time.time()-t@))

18 = time.time()

torch.no_grad():

correct a

total - @
images, labels test_loader:
images = Variable(images)
labels = Variable(labels)
outputs = model(images)
_ s predicted = torch.max(outputs.data, 1)
total labels.size(@)
correct (predicted labels).sum() .item()

print('Test Accuracy of the model on the 18808 test images: {} %'.format(10@ * correct / total))
print("{} Verification in seconds'.format(time.time()-t@))

The plot shows how the loss function works. We see the loss at each epoch get reduced which
uses backpropagation to update weights to increase accuracy.

In [13]: | import matplotlib.pyplot as plt
#matplotlib inline

plt.plot(train_losses,label = "Train losses")
plt.plot(test_losses, label = "Test losses")
plt.legend()

out[13 <matplotlib.legend.Legend at @x28d78=681de>»

123 = Train losses
300 Test losses
175

150

125

100

0.75 .

050 \

0 5 10 15 20 25 30

PyTorch GPU:
For the sake of space and repetitiveness, the GPU code is omitted due to its similarity
with the CPU code. By default PyTorch will utilize the CPU, however to check for a CUDA

enabled device on the system, one must run the following command:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
This only isn’t sufficient enough however, you must also move the CNN model onto the GPU

and make modifications accordingly as is seen in the snippet below.

14

In [7]:

In [8]:

model = Network()

model = Network().to(device)

criterion = nn.CrossEntropyloss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

iteration = @
te = time.time()
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = Variable(images.cuda())
labels = Variable(labels.cuda())

#Clear the gradients
optimizer.zero_grad()

#Forward propagation
outputs = model(images)

#Calculating loss with softmax to obtain cross entropy loss
loss = criterion(outputs, labels)

#Backward propation
loss.backward()

#Updating gradients
optimizer.step()

iteration += 1

#Total number of Labels
total = labels.size(8)

#0btaining predictions from max value
_, predicted = torch.max({outputs.data, 1)

#Calculate the number of correct answers
correct = (predicted == labels).sum().item()

#Print loss and accuracy
if (i + 1) % 188 ==
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'
.format(epoch + 1, num_epochs, i + 1, len{train_loader), loss.item(),
(correct / total) * 188))

print('{} seconds'.format(time.time()-t&))

15

Sample Output using PyTorch scripts:

—r--c LT s - --r

Epoch [3/8], Step [1@@/68@], Loss: ©.4496 23.
Epoch [3/8], Step [288/68@], Loss: ©.2767, Accuracy: 92.
Epoch [3/8], Step [368/68@], Loss: ©.5174, Accuracy: B88.
Epoch [3/8], Step [488/68@], Loss: ©.3252, Accuracy: B8,
Epoch [3/8], Step [588/68@], Loss: ©.2568, Accuracy: 91,
Epoch [3/8], Step [668/68@], Loss: ©.3836, Accuracy: 87.
Epoch [4/8], Step [1@8/68@], Loss: ©.3748, Accuracy: B89,
Epoch [4/8], Step [288/68@], Loss: ©.4118, Accuracy: B86.
Epoch [4/8], Step [36@/68@], Loss: ©.2178, Accuracy: 98.
Epoch [4/8], Step [488/68@], Loss: ©.2915, Accuracy: B86.
Epoch [4/8], Step [588/68@], Loss: ©.2642, Accuracy: 8%,
Epoch [4/8], Step [668/68@], Loss: ©.2552, Accuracy: 95.
Epoch [5/8], Step [l1@8/68@], Loss: ©.3884, Accuracy: 91.
Epoch [5/8], Step [288/68@], Loss: ©.26@87, Accuracy: 98.
Epoch [5/8], Step [368/68@], Loss: ©.3689, Accuracy: 92.
Epoch [5/8], Step [488/68@], Loss: ©.2431, Accuracy: 91.
Epoch [5/8], Step [588/68@], Loss: ©.3388, Accuracy: B86.
Epoch [5/8], Step [66@/68@], Loss: ©.3157, Accuracy: 8%9.
Epoch [6/8], Step [168/68@], Loss: ©.4828, Accuracy: B89.
Epoch [6/8], Step [268/68@], Loss: ©.2389, Accuracy: 93.
Epoch [6/8], Step [368/68@], Loss: ©.3681, Accuracy: B88.
Epoch [6/8], Step [488/68@], Loss: ©.4488, Accuracy: 85.
Epoch [6/8], Step [56@/68@], Loss: ©.4287, Accuracy: 83.
Epoch [6/8], Step [668/68@], Loss: ©.4576, Accuracy: 87.
Epoch [7/8], Step [188/58@], Loss: ©.2788, Accuracy: 92.
Epoch [7/8], Step [288/68@], Loss: @.2678, Accuracy: 89.
Epoch [7/8], Step [388/68@], Loss: ©.259%, Accuracy: 93.
Epoch [7/8], Step [4B8/68@], Loss: ©.338%, Accuracy: 86.
Epoch [7/8], Step [5B8/68@], Loss: @.2114, Accuracy: 98.
Epoch [7/8], Step [6B8/68@], Loss: ©.2277, Accuracy: 98.
Epoch [8/8], Step [188/568@], Loss: ©.2548, Accuracy: 92.
Epoch [8/8], Step [288/568@], Loss: @.2871, Accuracy: 98.
Epoch [8/8], Step [368/68@], Loss: @.4@862, Accuracy: 81.
Epoch [8/8], Step [4B8/66@], Loss: @.173%8, Accuracy: 95.
Epoch [8/8], Step [5@8/66@], Loss: ©.3@58, Accuracy: B88.
Epoch [8/8], Step [60@/668@], Loss: @.1862, Accuracy: 94.
82.8873239226477 seconds
In [8]: t@ = time.time()
with torch.no_grad():
correct = @
total = @
for images, labels in test_loader:
images = Variable(images.cuda()
labels = Variable(labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(8)
correct += (predicted == labels).sum().item()

L= -+ - - -4

e m e ey -

» AcCcuracy:

aek
aek
aek
aek
aek
aek
aek
aek
aek
aek
aex
aex
aex
aex
aex
aex
aex
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ok
8ex
8ex
8ex

print('Test Accuracy of the model on the 18888 test images: {} %' .format(1e@ * correct / total))
print('{} Verification in seconds’.format(time.time()-t@))

Test Accuracy of the model on the 12808 test images: 88.29 %

1.135472297668457 Verification in seconds

16

Evaluation/Results

In this extremely competitive and revealing Battle of the Threads, CPU is a winner for
smaller datasets and neural networks. GPU is however the winner for larger datasets and CNNs
or neural networks with a larger number of layers and epochs. While it can be argued that the
training images were greyscale and that the dataset was relatively small for our facial
recognition, we were able to repeatedly get similar results. After implementing the Fashion
MNIST dataset on our CNNs and our own face dataset, we are able to conclusively tell that the
GPUs are far better for not only the training portion of a model but also the testing portion. Due
to the CPUs sequential calculations and the branching nature of NN, it isn’t surprising to see
that the GPU was able to outperform the CPU.

Problems Faced

The primary trouble we faced had to do with understanding the workings of Neural
Networks and its implementation on Keras and PyTorch. We had no prior knowledge of ML or
CNN nor did we have much programming experience on Python. Implementation of the CNN on
PyTorch was especially difficult because the 24 video tutorial we were following didn’t end up
covering the training part of the model because it is still an ongoing tutorial series. We were able
to look at other sources, however, for guidance on how to do the training portion of the project.
When coding, PyTorch was a lot more difficult to code because of the granular control it offers to
the user. A PyTorch CNN coder must know the input and output sizes at each layer or else the
code will not work.

When creating a neural network and training the data, instead of our network generalizing
the data, it was overfitting the data. Overfitting is a modeling error which occurs when a function
is too closely fit to a limited set of data points. We had to train the data to generalize the test
images, instead of overfitting the images, which creates a super high accuracy rate.

Conclusion

When we first started this project we only knew the very basics of neural networks, in
that they are used in data analysis and product prediction but not much was known about the
innerworkings. By the end of the project we understood the high level and learned a lot about
how much GPUs can speed up the process of a complex neural network. Overall this was an
interesting and enlightening project.

17

References

https://www.deeplearningwizard.com/deep learning/practical pytorch/pytorch convolutional ne

uralnetwork/

https://keras.io
https://www.tensorflow.org/install/gpu

Presentation

https://docs.google.com/presentation/d/1 PSDInOr-Gm70V7mCscY 83s1438KIBbatBSAHAKvyr
9U/edit?usp=sharing

18

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://keras.io
https://www.tensorflow.org/install/gpu
https://docs.google.com/presentation/d/1PSDInOr-Gm7OV7mCscY83sI438KIBbatBSAHAjKyr9U/edit?usp=sharing
https://docs.google.com/presentation/d/1PSDInOr-Gm7OV7mCscY83sI438KIBbatBSAHAjKyr9U/edit?usp=sharing

	Project Overview
	GPU Acceleration
	Documentation on code execution
	Evaluation/Results
	Problems Faced
	Conclusion
	References
	Presentation

