
 

Performance Comparison of Neural 
Networks using Keras and PyTorch 

 
 
 
 

CS/EE 147: GPU Computing and Programming Final Project  
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
Team Name:   
2EEs_1CS_404_NOT_FOUND! 
 
Team Members:  
Estevan Valencia Rivera (861211373) 
Yash Patel (SID: 861215968) 
Venkat Prathipati (861209938) 

1 



 

Table of Contents:  
Project Overview​ 3 

GPU Acceleration​ 3 

Documentation on code execution​ 8 

Evaluation/Results​ 17 

Problems Faced​ 17 

Conclusion​ 17 

References​ 18 

Presentation​ 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 



 

 

Project Overview 
A graphics processing unit (GPU) is a specialized electronic hardware designed for 

specialized display functions. Due to their architecture, they have seen usage beyond that. A 
GPU performs parallel operations and this makes them the perfect hardware for Image 
Processing, Data analysis, Machine Learning and Neural Networks (NN). The objective of this 
project was to implement and evaluate the performance of neural networks using two different 
frameworks: Keras and PyTorch. We extended the dataset implementation in Keras by using our 
own dataset to recognize faces.  

GPU Acceleration 
GPU-accelerated computing is the employment of a graphics processing unit (GPU) 

along with a computer processing unit (CPU) in order to facilitate processing-intensive 
operations such as deep learning, analytics and engineering applications. In this project the 
Facial Recognition pipeline uses algorithms and techniques such as the parallel algorithm to 
normalize data and improve our recognition capabilities. Parallel algorithm can be executed a 
piece at a time on many different processing devices, and then is combined together again to get 
the correct result. 

Keras uses cuDNN is an NVIDIA library designed specifically to speed up the training 
aspect of neural networks using a GPU. In PyTorch, the model gets moved onto the GPU and 
just that can result in a performance gain but in the future we would imagine that moving the 
data (images) onto the GPU will also result in increased performance. Since NNs are heavily 
image based and have many number of nodes, we can intuitively state that a GPU will be much 
better performance than a CPU due to the ability of parallelization of the network.  

 

Implementation Details 
Data Collection for Facial Recognition: 

Before training our neural networks to detect faces using either framework, we decided to 
create our own test data to train neural networks. In order to get great training data, we decided 
to implement the OpenCV library implementation for facial detection. OpenCV is an open 
source computer vision and machine learning software library. The library has algorithms to 
detect and recognize faces, identify objects, camera movements and etc.  
​ We used the library to capture images of ourselves through the computers built-in 
camera. Using color detector to convert image to gray and then resize the image to fit just the 

3 



 

face of the person in the image. We then align the faces in the images by using the Facial Aligner 
library. Once the program was ready, we took 200 training images for each person and around 10 
test images. All the images only have the face in the image with some features such as hair and 
ears cropped out. The image to the left was the original, and it outputs two separate images(to the 
right). These training and test images were used for steps to follow.  
 

​  
Neural Networks Using Keras: 
​ Keras is a high level API that is written in Python. Keras can use various backends like 
Tensor Flow, CNTK, and Theano. For our project we used TensorFlow because it was familiar to 
us since we had a lecture on it. Another benefit of Keras is that it allows us to easily select 
between the CPU or GPU. Keras was installed in one of our home desktops with a GTX 1060 
GPU. 
​ For any NN you need a dataset to train it. While we were getting familiar with neural 
networks we used the MNIST Handwritten Digit Dataset. This data set has 60,000 28x28 images 
that are used to train the NN. It also has 10,000 images to test the NN. For the NN to classify the 
Handwritten Digits we used a 3 Layer NN. The first layer does not really count as a layer as it 
only flattens the matrix into a vector. The first real layer is a Dense layer with a size of 128 and 
an activation function of Rectified Linear (RELU). The second layer is exactly like the first layer 
a Dense layer with a size of 128 and an activation function of RELU. The final layer is another 
Dense layer with a size of 10, it is 10 because there are 10 possible digits that could be written. 
This layer uses a softmax activation function to finally classify the digit.  

 

Dataset CPU Runtime Avg. GPU Runtime Avg. 

MNIST Digits 3.5 s 5.5 s 

MNIST Fashion 4.5 s 6.5 s 

Figure 1: Computation Time for 3 layer NN 
 
So we test the above NN on two datasets and on both the CPU was able to train the NN 

about 1 second faster per epoch than the GPU. We then Created a NN that did not make the 
accuracy better but it increases the computation needed to be done to train the NN. We added 10 
Dense layers each with a size of 1024. This was only done to compare the computation time 
between the CPU and GPU.  

4 



 

 
 

Dataset CPU Runtime Avg. GPU Runtime Avg. 

MNIST Digits 312 s 31 s 

MNIST Fashion 320 s 31 s 

Figure 2: Computation Time for 10 layer NN 
​ As seen in Figure 2, when the computation for the NN gets extremely large like in more 
complex NN the GPU is much more efficient in training the NN. 
 
Convolutional Neural Networks Using Keras: 
​ We then used Keras again to create facial reconition NN that was able to distinguish 
between two people. We created our own dataset as described above. The NN consisted of two 
Convolutional Layer both using  the Relu activation function. After each convolutional layer we 
down sample the image using  a Max Pooling layer. We then Flatten the data and pass it through 
two Dense layer to classify it. It is also passed through a Dropout layer to get rid of some of the 
feature to prevent over fitting. We did not compare the performance between the GPU and the 
CPU because it was a relatively small NN in which the CPU performed a little better. The GPU 
trained each epoch in about 3 seconds, this was also due to the fact that our face data set was 
pretty small.Only 200 pictures of each person. 

We tested the NN with 32 images and of the 32 images the NL classified two images 
incorrectly. This means that our NN has about a 94% accuracy. There is a possibility of over 
training but we tested with images taken in different conditions as the training data. 

  
Neural Networks Using PyTorch: 
​ PyTorch is a machine learning library for Python used for a variety of applications such 
as artificial intelligence, natural language processing and neural networks. PyTorch provides two 
main high level features: tensor computing with GPU acceleration and construction of neural 
networks using automatic differentiation. For this project, PyTorch was used to construct a 
multi-layered Convolutional Neural Network (CNN) and it was trained on a GPU and a CPU to 
observe performance differences between the two. The CPU used for testing was an Intel 
i5-6600K and the GPU used was a NVIDIA GeForce GTX 1060 6GB.  

5 



 

To begin creating the model, the first step is to import the following libraries: pytorch, 
torchvision, and numpy. To keep testing consistent, the same dataset was utilized in both Keras 
and PyTorch based models. The Fashion Modified National Institute of Standards and 
Technology (MNIST) dataset created by Zalando Research was used on this CNN. It contains 
60,000 28x28 grayscale images for training and 10,000 28x28 grayscale images for testing. 
Figure N shows images from the Fashion MNIST dataset. PyTorch is often installed with a few 
datasets preloaded and so the next step is to import the test and the training datasets into the 
workspace. A sample of the dataset is shown in Figure N.  

 
Figure 3: Fashion MNIST Dataset Sample 

 
After importing the libraries and the datasets, the following hyperparameters are 

initialized: epochs, classes, batch size and learning rate. The importance and description of each 
can be found in the code snippet provided in the Documentation portion of the report. The design 
of the model for this project is an extremely common one for this dataset. Figure 4 shows the 
structure and layers of the CNN, it contains a total of 6 layers: 2 convolutional layers, 2 Max 
Pooling layers, 1 fully connected layer and 1input layer. The next step in  the creation of the 
network is the loss function that helps a CNN prediction increase through each iteration. For our 
case, we used the cross-entropy loss function, the graph of which is shown in Figure 5.  

 

 
Figure 4: Block Model of CNN 

6 



 

 
Figure 5: Cross-Entropy Loss Function 

​ The model has been created and now it needs to be initialized and trained. The 
initialization is extremely easy and can be seen in the code snippet. Training of a CNN is 
basically performing forward propagation, calculating the loss and then performing backward 
propagation to use the gradients to update the parameters. After training the model, it was tested 
against the testing dataset. The final changes to the code were for the syntax when changing the 
execution device from the CPU to the GPU. Table 6 exhibits the performance increase in not 
only the training of the network but also the testing of it. 

 CPU GPU 

Training Time 486.193 s 80.487 s 

Model Accuracy 85.9% 88.62% 

Testing Time 4.004s 1.169s 

Table 6: GPU vs CPU performance of CNN using PyTorch 
 

The results show around 6x time reduction when using a GPU for training a CNN 
compared to a CPU. We also see a time reduction when using a GPU for testing the CNN. That 
may prove useful in real world applications like autonomous vehicles where the input is 
essentially the real world images and having a reduced time would benefit the car in making 
quicker decisions. We see an increase in model accuracy for the GPU but after running the 

7 



 

scripts several times, it is not definitive if the GPU has an advantage over the CPU. The results 
we got could be attributed to the random seed for the initialization of the CNN.  

Documentation on code execution 
Facial Detection using OpenCV(Training Data/Test Data): 

 
 
 
 
 

8 



 

 
 
MNIST Fashion and Handwritten Digits Neural Network 

​  
This can be run as a simple python script, if everything is already downloaded onto the system 
the program will automatically download the dataset since it is part of the Keras Framework. 
This can also be run on Jupyter Notebook using the included file. To run it on the CPU you must 
set os.environ["CUDA_VISIBLE_DEVICES"] = “-1” to -1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9 



 

 
 
 
Facial Recognition using a Convolutional Neural Network 

​ 

10 



 

Since for this we used our own dataset it requires us to load and label the data into the program. 
The variable DATADIR should be changed to the location of the folder that holds the multiple 
folders of the different people. CATEGORIES should be changed to the names of the folders that 
holds the data you want to use to train. CATEGORIES2 should be changed to the names of the 
folders that holds the data you want to use to test. Once those variables are changed it can be run 
as a simple python script assuming everything has been installed on the system. This can also be 
run on Jupyter Notebook using the included file. To run it on the CPU you must set 
os.environ["CUDA_VISIBLE_DEVICES"] = “-1” to -1. 
​  
PyTorch CPU Full Code: 

 

11 



 

 
 

12 



 

 
 
 

13 



 

The plot shows how the loss function works. We see the loss at each epoch get reduced which 
uses backpropagation to update weights to increase accuracy. 
 

 
 
 
PyTorch GPU: 
​ For the sake of space and repetitiveness, the GPU code is omitted due to its similarity 
with the CPU code. By default PyTorch will utilize the CPU, however to check for a CUDA 
enabled device on the system, one must run the following command:  

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") 
This only isn’t sufficient enough however, you must also move the CNN model onto the GPU 
and make modifications accordingly as is seen in the snippet below.  

14 



 

 
 
 
 
 
 
 
 
​  
 

15 



 

Sample Output using PyTorch scripts: 

 

 

16 



 

Evaluation/Results 
In this extremely competitive and revealing Battle of the Threads, CPU is a winner for 

smaller datasets and neural networks. GPU is however the winner for larger datasets and CNNs 
or neural networks with a larger number of layers and epochs. While it can be argued that the 
training images were greyscale and that the dataset was relatively small for our facial 
recognition, we were able to repeatedly get similar results. After implementing the Fashion 
MNIST dataset on our CNNs and our own face dataset, we are able to conclusively tell that the 
GPUs are far better for not only the training portion of a model but also the testing portion. Due 
to the CPUs sequential calculations and the branching nature of NNs, it isn’t surprising to see 
that the GPU was able to outperform the CPU.  

 

Problems Faced 
​ The primary trouble we faced had to do with understanding the workings of Neural 
Networks and its implementation on Keras and PyTorch. We had no prior knowledge of ML or 
CNN nor did we have much programming experience on Python. Implementation of the CNN on 
PyTorch was especially difficult because the 24 video tutorial we were following didn’t end up 
covering the training part of the model because it is still an ongoing tutorial series. We were able 
to look at other sources, however, for guidance on how to do the training portion of the project. 
When coding, PyTorch was a lot more difficult to code because of the granular control it offers to 
the user. A PyTorch CNN coder must know the input and output sizes at each layer or else the 
code will not work. 

When creating a neural network and training the data, instead of our network generalizing 
the data, it was overfitting the data. Overfitting is a modeling error which occurs when a function 
is too closely fit to a limited set of data points. We had to train the data to generalize the test 
images, instead of overfitting the images, which creates a super high accuracy rate.  

Conclusion 
When we first started this project we only knew the very basics of neural networks, in 

that they are used in data analysis and product prediction but not much was known about the 
innerworkings. By the end of the project we understood the high level and learned a lot about 
how much GPUs can speed up the process of a complex neural network. Overall this was an 
interesting and enlightening project. 

 

17 



 

References 
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_ne
uralnetwork/ 
 
https://keras.io 
 
https://www.tensorflow.org/install/gpu  

Presentation 
https://docs.google.com/presentation/d/1PSDInOr-Gm7OV7mCscY83sI438KIBbatBSAHAjKyr
9U/edit?usp=sharing  

 

18 

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_convolutional_neuralnetwork/
https://keras.io
https://www.tensorflow.org/install/gpu
https://docs.google.com/presentation/d/1PSDInOr-Gm7OV7mCscY83sI438KIBbatBSAHAjKyr9U/edit?usp=sharing
https://docs.google.com/presentation/d/1PSDInOr-Gm7OV7mCscY83sI438KIBbatBSAHAjKyr9U/edit?usp=sharing

	Project Overview 
	GPU Acceleration 
	Documentation on code execution 
	Evaluation/Results 
	Problems Faced 
	Conclusion 
	References 
	Presentation 

