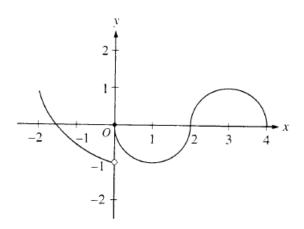
AB Calculus Practice 2.1

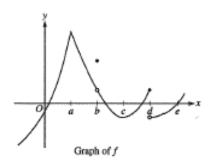
Intermediate, Mean, and Extreme Value Theorems

2. All	functions are	, but not all
functions are	.	
	o be differentiable, it can't have	e any
4. The Intermediat	te Value Theorem applies only t	to all functions.
5. The Mean Value		functions, which means they're
6. The Extreme Va	alue Theorem applies only to all	lfunctions.
		erval, there must be at least one point at which the slope on the interval.
8. The average slo	pe on an interval bound by $[x_1,$	x_2] is found with the formula
9. A	line is a straight line betwee	een two points.
10. A	line is a straight line whice	ch matches the instantaneous slope at one point.
11. The Mean Valu		and lines will be
		interval, any function will have a
obsoluto	and an absolute	valua

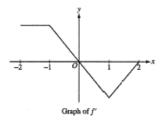
14. If the first derivative is never equal to zero, the absolute extrema will be at the ______ of the interval.



7. The graph of the function f shown in the figure above has a vertical tangent at the point (2, 0) and horizontal tangents at the points (1, -1) and (3, 1). For what value(s) of x, -2 < x < 4, is f not differentiable?



8. In the above graph of f(x), for which value of x is f continuous, but not differentiable?



- 9. The graph of f, the derivative of the function f, is shown above. Which of the following statements is false about f?
- (A) f has a local maximum at x = 0
- (B) f is differentiable at x = -1 and x = 1
- (C) f is decreasing for $0 \le x \le 2$
- (D) f is increasing for $1 \le x \le 2$
- (E) f is increasing for $-2 \le x \le 0$
- 10. Let f be a function that is differentiable on the open interval (1, 10). If f(1) = -4, f(5) = 5, and f(2) = 1, which of the following must be true? Circle all that apply
 - I. f has at least 2 zeros.
 - II. The graph of f has at least one horizontal tangent.
 - III. For some c, 2 < c < 5, f(c) = 3.
- 11. The function f is defined by $f(x) = 2x^3 4x^2 + 1$. The application of the Mean Value Theorem to f on the interval $0 \le x \le 2$ guarantees the existence of a value c, where 0 < c < 2, such that f'(c) = 1

12. Let f be a function with first derivative defined by $f'(x) = \frac{3x^2 - 8}{x^2}$ for x > 0. It is known that f(1) = 9 and f(3) = 11. What value of x in the open interval (1, 3) satisfies the conclusion of the Mean Value Theorem for f on the closed interval [1, 3]?

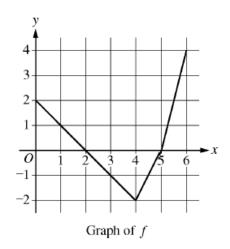
- 13. The function f is continuous for $-2 \le x \le 1$ and differentiable for $-2 \le x \le 1$. If f(-2) = -5 and f(1) = 4, which of the following statements could be false?
- (A) There exists c, where -2 < c < 1, such that f'(c) = 3.
- (B) There exists c, where $-2 \le c \le 1$, such that $f(c) \ge f(x)$ for all x on the closed interval $-2 \le x \le 1$.
- (C) There exists c, where -2 < c < 1, such that f(c) = 0.
- (D) There exists c, where -2 < c < 1, such that f'(c) = 0.
- (E) There exists c, where -2 < c < 1, such that f(c) = 3.

- 14. If g is a differentiable function such that g(x) > 0 for all real numbers x and if $f'(x) = (x^2 4)g(x)$, which of the following is true?
- (A) f has a relative maximum at x = -2 and a relative minimum at x = 2.
- (B) f has a relative minimum at x = -2 and a relative maximum at x = 2.
- (C) f has relative minima at x = -2 and at x = 2.
- (D) f has relative maxima at x = -2 and at x = 2.
- (E) It cannot be determined if f has any relative extrema.

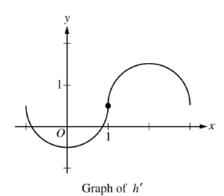
15. The first derivative of the function f is given by $f'(x) = \frac{\sin^2 x}{x} - \frac{1}{5}$. How many critical values does f have on the open interval (0, 10)?

- 16. The function f is defined for all x in the closed interval [a, b]. If f does not attain a maximum value on [a, b], which of the following must be false?
- (A) f is continuous on [a, b].
- (B) f is bounded on [a, b].
- (C) f attains a minimum value on [a, b].
- (D) The graph of f does not have a vertical asymptote in the interval [a, b].
- (E) The equation f'(x) = 0 has a solution in the interval [a, b].

- 17. Let f be the function given by f(x) = |x|. Which of the following statements about f are false? (circle all that apply)
 - I. f is continuous at x = 0.
 - II. f is differentiable at x = 0.
 - III. f has an absolute minimum at x = 0.



18. The graph of the function f, shown above, consists of three line segments. If the function g is an antiderivative of f such that g(2) = 9, for how many values of c, where $0 \le c \le 6$, does g(c) = 7?



19. The function h is defined on the closed interval [-1, 3]. The graph of h, the derivative of h, is shown above. The graph consists of two semicircles with a common endpoint at x = 1. Which of the following statements about h must be false, if any?

- I. h(-1) = h(3)
- II. h is continuous at x = 1.
- III. h is differentiable at x = 1.
- IV. The graph of h has a vertical asymptote at x = 1.