Generative Adversarial Nets

Disclaimer: Portions of text in this review are directly taken from the research paper linked
above. | am in no way claiming ownership of text or claiming originality of it. The notes here
are simply for study, personal and research purposes.

Authors

Authors from University of Montreal, MILA. Include lan Goodfellow and Yoshua Bengio

(Turing Award Winner)

Abstract:

Proposal of a new framework for estimating generative models via an adversarial
process.

Two data models are simultaneously trained, a Generative Model G, that captures the
data distribution and a Discriminative Model D that estimates the probability that a
sample came from the training data rather than G.

The training procedure for G is to maximize the probability of D making a mistake.
This framework corresponds to a minimax two player game.

In the space of arbitrary functions G and D, a unique solution exists, with G recovering
the training data distribution and D equal to Y2 everywhere.

In the case where G and D are defined by multilayer perceptrons, the entire system can
be trained with backpropagation.

There is no need for any Markov chains or unrolled approximate interference networks
during either training or generation of samples.

Experiments demonstrate the potential of the framework through qualitative and
quantitative evaluation of generated samples.

Introduction

Current state-of-the-art (before this paper in 2014-15) deep learning models possess the
capability to map high-dimensional, rich sensory input to a class label (Classification
Models). These successes were based on backpropagation and dropout algorithms,
using piecewise Rectified Linear Units which have a particularly well behaved gradient.
Deep Generative models on the other hand have had less of an impact due to the
difficulty in approximating many intractable probabilistic computations that arise in
maximum likelihood estimation and related strategies, and due to difficulty in leveraging
the benefits of piecewise linear units in the generative context.

In the proposed Adversarial Nets framework, the generative model is pitted against an
adversary: a discriminative model that learns to determine whether a sample is from the
model distribution or data distribution.

The generative model can be thought of as analogous to a team of counterfeiters, trying
to produce fake currency and use it without detection, while the discriminative model is
the police, trying to detect the counterfeit currency.

https://papers.nips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Competition in this game drives both teams to improve their methods until the
counterfeits are indistinguishable from the genuine articles.

This framework can yield specific training algorithms for many kinds of models and
optimization algorithm.

In this article, we explore the special case when the generative model generates
samples by passing random noise through a multilayer perceptron, and the
discriminative model is also a multilayer perceptron. We refer to this case as adversarial
nets.

In this case we can train both models using only highly successful back propagation and
dropout algorithms and sample from the generative model using only forward
propagation. No approximate inference or Markov chains are necessary.

Related Works

Before this paper, most generative models were focused on providing a parametric
specification of a probability distribution function. The model is then trained by
maximizing the log likelihood.

In such models probably the most successful was Boltzamann machine. Such models
generally have intractable likelihood functions and therefore require numerous
approximations to the likelihood gradient.

These difficulties motivated the development of “generative machines” - models that do
not explicitly represent the likelihood, yet are able to generate samples from the desired
distribution.

Generative Stochastic Networks are an example of a generative machine that can be

trained with exact back propagation rather than numerous approximations by the
Boltzmann machines.

This work extends the idea of Generative machines by eliminating the Markov Chains
used in Generative Stochastic Networks.

Our work backpropagates derivatives through generative processes by using the
observation that:

lilfh‘Fzﬁm,\'[n.a!n.."'fw +¢€) = Vaf(z).

o This mathematical expression is related to the concept of a gradient of a function
and its behavior under a small perturbation.
m ~NVI0.7T). This denotes the expectation (average) over the random
variable epsilon, which is drawn from a multivariate normal distribution
with mean 0 and covariance matrix 02 |, where | is the identity matrix.

| fla+ *’}: This is the function f evaluated at x + epsilon where epsilon is
a small perturbation.
m VXx: This is the gradient operator with respect to x.
o The expression is stating that as the perturbation epsilon becomes very small
(sigma -> 0), the gradient of the expected value of f(x + epsilon) approaches the
gradient of f(x).

Kingma and Welling (Auto-Encoding Variational Bayes Paper) and Rezende (Stochastic
backpropagation and approximate inference in deep generative models) had developed
more general stochastic backpropagation rules, allowing one to backpropagate through
Gaussian Distributions with finite variance, and to backpropagate to the covariance
parameter as well as the mean.

These backpropagation rules could allow one to learn the conditional variance of the
generator, which we treated as a hyperparameter in this work.

Kingma and Welling and Rezende use Stochastic backpropagation to train variational
autoencoders.

Like GANSs, variational autoencoders pair a differentiable generator network in a VAE is a
recognition model that performs approximate inference.

GANSs require differentiation through the visible units, and thus cannot model discrete
data, while VAEs require differentiation through hidden units, and thus cannot model
discrete data, while VAEs require differentiation through the hidden units, and thus
cannot have discrete latent variables.

Other previous works have also taken the approach of using a discriminative criterion to
train a generative model. These approaches use criteria that are intractable for deep
generative models. These methods are difficult even to approximate for deep models
because they involve ratios of probabilities which cannot be approximated using
variational approximations that lower bound the probability.

Noise-contrastive estimation (NCE) involves training a generative model by learning the
weights that make the model useful for discriminating data from a fixed noise distribution.
Using a previously trained model as the noise distribution allows training a sequence of
models of increasing quality.

This can be seen as an informal competition mechanism similar in spirit to the formal
competition used in the adversarial networks game. The key limitation of NCE is that its
discriminator is defined by the ratio of the probability densities of the noise distribution
and the model distribution, and thus requires the ability to evaluate and backpropagate
through both densities.

Some other previous works have used the idea of having two neural networks compete.
Like Predictability Minimization, in which each hidden unit in a neural network, is trained
to be different from the output of a second network, which predicts the value of that
hidden unit given the value of all other hidden units. This work differs from predictability
minimization in three important ways:

1. In this work, the competition between the networks is the sole training criterion, and is
sufficient on its own to train the network. Predictability minimization is only a regularizer
that encourages the hidden units of a neural network to be statistically independent while
they accomplish some other task; it is not a primary training criterion.

2. The nature of the competition is different. In predictability minimization, two network’s
outputs are compared, with one network trying to make outputs similar and the other
trying to make the outputs different. The output in question is single scalar. In GANs, one
network produces a rich, high dimensional vector that is used as the input to another
network, and attempts to choose an input that the other network does not know how to
process.

e 3. The specification of the learning process is different. Predictability minimization is
described as an optimization problem, and have a value function that one agent seeks to
maximize and the other seeks to minimize. The game terminates at a saddle point that is
a minimum with respect to one player’s strategy and a maximum with respect to the
other player’s strategy.

Body (subtopics being discussed)

Adversarial Nets

e The adversarial modeling framework is the most straightforward to apply when the
models are both multilayer perceptrons.

e Prior: A prior distribution in Bayesian analysis is the assumed probability distribution of
an uncertain quantity before any evidence is taken into account. It represents our prior
belief about the value of a parameter.

e Components of the GAN:

o Generator (G):
m Input: A noise vector z sampled from a prior distribution pz(z).
m Output: A data sample G(z; 6,) that aims to mimic the real data
distribution.
m Parameters: 6, are the weights of the multilayer perceptron (MLP)
representing the generator.
o Discriminator (D):
m Input: A data sample x.
m Output: A scalar D(x; 8,) representing the probability that x came from the
real data distribution rather than the generator’s distribution.
m Parameters: 0, are the weights of the MLP representing the discriminator.

e Training Process: The training process involves a two-player minimax game where the

generator and discriminator are trained simultaneously but with opposing objectives.
o Discriminator’s objective:
m Maximize the probability of correctly classifying real data as real and
generated data as fake.
m This is achieved by maximizing the value function V(D, G):

max V (D, G) = Epmpy(a) 108 D(z)] + E o, () [log(1 — D(G(2)))].

|
o Generator’s objective:
m Minimize the probability that the discriminator correctly classifies
generated data as fake.
m This is achieved by minimizing log(1 - D(G(z)):

min V(D, G) = .., (- log(1 — D(G(2)))]

|
e Value Function: The Value function V(D, G) combines both objectives:

minmax V(D, G) = Eqpy,(2)[108 D(2)] + Ezp, () [log(1 — D(G(2)))]-

Value Function in Detail:
e Real Data Term:

o Interpretation: This term encourages the discriminator to output high probabilities
(close to 1) for real data samples x drawn from the true data distribution pga.(X)
o Maximization: By maximizing log D(x), the discriminator learns to correctly
classify data as real.
e Fake Data Term:

Ezp.(z)[log(1 — D(G(2)))].

o Interpretation: This term encourages the discriminator to output low probabilities
(close to 0) for fake data samples G(z) generated by the generator from noise z
drawn from the prior distribution pz(z).
o Maximization: By maximizing log(1 - D(G(z)), the discriminator learns to correctly
classify generated data as fake.
Generator’s Objective:
e The generator’s objective is to minimize the value function V(D,G). Specifically the
generator aims to minimize the second term of the value function (Fake Data Term).
[J

Conclusions

Citations in Paper

	Generative Adversarial Nets
	Disclaimer: Portions of text in this review are directly taken from the research paper linked above. I am in no way claiming ownership of text or claiming originality of it. The notes here are simply for study, personal and research purposes.
	Authors
	Abstract:
	Introduction
	Related Works
	Body (subtopics being discussed)
	Adversarial Nets

	Conclusions
	Citations in Paper

