Productions ou réponses attendues du candidat

A: Conjecture avec GeoGebra

- **1.**Construction du curseur *a*
- **2.**Tracer des courbes C_f et C_g .

Placement des points A et B

Tracer des droites (d_1) et (d_2) .

- **3.**Placement du point M (intersection des tangentes (d_1) et (d_2)).
- 4. Conjecture des coordonnées de M
- a) lorsque le curseur a = -1, il semble que M(0;-1)
- b) lorsque le curseur a = 0, il semble que M(0,5; -2)
- c) lorsque le curseur a = 2, il semble que M(1,5; -4)
- **5.** Le lieu géométrique du point M semble décrire la courbe représentative de la fonction $x \, \mathbb{Z} \, -x-2$

B: Démonstration

1.l'équation de la tangente (d_1) en fonction de a: $y = (2a-4)x - a^2$

L'équation de la tangente (d₂) en fonction de a: $y = (-4a + 2)x + 2a^2 - 3$

2. Coordonnées du point M

$$x_{\rm M} = \frac{1}{2}a + \frac{1}{2}$$
 $y_{\rm M} = -a - 2$

3. On a
$$y_{\rm M} = -a - 2$$

Donc la trace de M décrit l'équation y = -2x - 1 sur R

Tangente(m, f)

$$y = -m^2 + 2 \text{ m x} - 4 \text{ x}$$

$$y = 2 m^2 - 4 m x + 2 x - 3$$

$$-m^2 + 2m x - 4x = 2m^2 - 4m x + 2x - 3$$

Résoudre:
$$\left\{ x = \frac{1}{2} m + \frac{1}{2} \right\}$$

p:=Substituer(y = -m² + 2m x - 4x, {x = (1/2)m +(1/2)})

$$\rightarrow$$
 p: y = -m - 2