Implementation plan

This tool is already installed to everyone’s machine as it is built-in to IntelliJ. After understanding
how to use it (see my demo) you can start using it right away.

It is expected from you to show the test coverage report of the lines you added in the
video evidence for every ticket.

Configuring and using JaCoCo

You can use JaCoCo to do either an automated unit/integration test, or just a manual test

coverage report. JaCoCo can do either or a combination of all.

Using IntelliJ

Creating a coverage report with Intellid is very simple. There is a separate button for it in

the toolbar.

Steps:

1. Click “Run with Coverage”

This will start “recording” the coverage, so every line you cover during your
manual or automated tests will be shown in the IDE.
In this example | have only 1 branching logic in my code and during my manual

test | only tested one of them, which shows in the covered LoC, but also next to

https://drive.google.com/open?id=1URXbfMbg77WdMC7IW2U8YbRTKwoR5bYY

each line of code in the editor.

In the editor uncovered
code is showed by a
light red line

LoC coverage shown

class-by-class

If you don’t use IntelliJ

Prerequisites:

1. Tomcat is installed on your machine
2. You know how to deploy your application on Tomcat. if not, learn here:
https://stackoverflow.com/questions/5109112/how-to-deploy-a-war-file-in-tomcat-7

Steps:

1. Download the latest Jacoco jars from here:
https://oss.sonatype.org/service/local/artifact/maven/redirect?r=snapshots&g=org.j
acoco&a=jacoco&e=zip&v=LATEST

https://drive.google.com/open?id=1Swjp8f591htYMsTeiJhEi2T4c7ONRTOf
https://stackoverflow.com/questions/5109112/how-to-deploy-a-war-file-in-tomcat-7
https://oss.sonatype.org/service/local/artifact/maven/redirect?r=snapshots&g=org.jacoco&a=jacoco&e=zip&v=LATEST
https://oss.sonatype.org/service/local/artifact/maven/redirect?r=snapshots&g=org.jacoco&a=jacoco&e=zip&v=LATEST

Name

E jacocoagent.jar

ﬁ jacocoant.jar
ﬁ jacococli.jar

-

E_ org.jacoco.agent-0.8.0.201801022044. jar

E org jacoco.ant-0.8.0.201801022044 jar

E org.jacoco.core-0.8.0.201801022044.jar

E org.jacoco.report-0.8.0.201801022044.jar

2. Extract the downloaded zip folder. You will see different Jacoco jars in /lib folder.

Size Type Modified
247.8kB Archive Jan2
658.8kB Archive Jan2
487.9kB Archive Jan2
226.5kB Archive Jan2

31.9kB Archive Jan2
155.1kB Archive Jan2
128.2kB Archive Jan2

Go the /bin folder of your tomcat. Create a setenv.sh file, add the below contents

and save it.

CATALINA OPTS="SCATALINA OPTS

-javaagent:/path/to/jacocoagent.jar=output=tcpserver, address

=*,dumponexit=true, includes=classes/to/be/included, classdump

dir=/path/to/save,destfile=/path/to/save/jacoco.exec, append=

false”

Below are the different configuration parameters with their explanations

Opiion
destfile
append

includes
excludes

exclclassloader

inclbootstrapclasses
inclnolocationclasses

sessionid
dumponexit

output

address

port

classdumpdir

jmx

Description

Path to the tl_ll'pl_ll file for execution data.

I set to true and the execution data file already exists, coverage dala is appended 1o the existing file. I set 1o false, an existing
execution data file will be replaced

Alist of class names that should be included in execution analysis. The list entries are separated by a colon (@) and may use wildcard
characters (* and 7). Except for performance optimization or technical comer cases this option is normally not required.

Alist of class names that should be excluded from execution analysis. The list entries are separated by a colon (:) and may use
wildcard characters (* and 7). Except for performance optimization or technical cormer cases this option is normally not required.

A list of class loader names that should be excluded from execution analysis. The list entries are separated by a colon () and may
use wildcard characters (* and 7). This option might be required in case of special frameworks that confiict with JaCoCo code
instrumentation, in particular class loaders that do not have access to the Java runtime classes.

Specifies whether also classes from the should be . Use this feature with caution, it needs heawy
Includesfexciudes tuning

Specifies whether also classes without a source location should be instrumented. Normally such classes are generated at runtime
e.g. by and are by default.

A SEsSion identifier that is wrilten with the execulion data. Without this parameter a random identifier is crealed by the agent.

If set to true coverage data will be written on VM shutdown. The dump can only be written if either file is specified or the output is
tcpserveritcpelient and a connection is open at the time when the VM terminates.

Output method to use for writing coverage data. Valid options are:

file: At VM termination execution data is written to the file specified in the destfile attribute.

tcpserver: The agent listens for incoming connections on the TCP port specified by the address and port attribute.
Execution data is written to this TCP connection.

tepelient: At startup the agent connects to the TCP port specified by the address and port attribute. Execution data is
written to this TCP connection.

none: Do not produce any output.

-

Please see the security considerations below.

IP address or hostname to bind to when the output method is TCPSErver or connect to when the output method is Tcpclient. in

Tcpserver mode the value "*” causes the agent 10 accept connections on any local address.

Port to bind to when the output method is TCpSErver or connect to when the output method is tcpclient. in tepserver mode

the port must be available, which means that if muliple JaCoCo agents should run on the same machine, different ports have to be

specified.

Location relative to the working directory where all class files seen by the agent are dumped to. This can be useful for debugging
or in case of created classes for example when scripting engines are used.

If set to true the agent exposes functionality via JMX under the name org. jacoco: type=Runtime. Please see the security

considerations below.

Default
jacoco.exec
true

* (all classes)

empty (no excluded classes)

sun.reflect.DelegatingClassloader

false
false

auto-generated
true

file

loapback interface

6300

no dumps

false

4. Restart your tomcat and do UI/API testing (manual or integration tests) of your

application. You should see command line argument property in the logs while
tomcat is deploying the application.

19-Mar-2018

13:15:02.

821 INFO [main]
sources

INFO [main]

talina.

org.apache.catalina
org.apache
h

atalin
= .catalina.
821 INFO [main] org.apache.catalina.
.exec,append=false
org.apache
org.apache.

INFO
INFO
INFOD
INFO

startup.Version
cocoagent. jar=output=tcpserver,address=*,dumponexit=true, includes=gg

1ine

line
line

Command
Command

argument:
argument
Command line argument
Command line argument: -javaagent:/opt/tomcat/1ib/ja

-Xms512M

log

g .classdumpdir=/hone/user /Desktop/jacoco/jacoco_cla)

Command 1ine
Command line
ommand 1ine
Command line

-log argument:
argument
argument
argument

Fetch coverage data using dump command:

java -jar /path/to/jacococli.jar dump —-address 127.0.0.1
—destfile=jacoco.exec -reset

— Desktop java -jar ~/Desktop/jacococli.jar dump --address 127.8.8.1 --destfile=jacoco.exec
[INFO] Connecting to (127.0.0.1:6300.

[INFO] Writing execution data to /home/user/Desktop/jacoco.exec.

Below are the different parameters for report command
report

java -jar jacococli.jar report [<execfiles> ...] --classfiles <path> [--csv <file»] [--encoding <charset=] [--help] [--html <dir=] [--name <name=] [--quiet]
[--sourcefiles <path=] [--tabwith <n>] [--xml <file»]

Generate reporis in different formats by reading exec and Java class files.

Option Description Required Multiple
<execfiles> list of JaCoCo *.exec files to read |
--classfiles <path> location of Java class files] []
--csv <file> output file for the CSV report

--encoding <charset> source file encoding (by default platform encoding is used)

--help show help

--html <dir= output directory for the HTML report

--name <name> name used for this report

--quiet suppress all output on stdout

--sourcefiles <path> location of the source files []
--tabwith <n> tab stop width for the source pages (default 4)

--xml <files output file for the XML report

http://sdetsforsdets.com/2018/03/19/code-coverage-jacoco/

	Implementation plan
	Configuring and using JaCoCo
	Using IntelliJ
	If you don’t use IntelliJ

