
Tab 1 



Meskvlla33’s 

Guide to Training Audio Source Separation Models 
(aka how to train a vocal remover) 

0 - Overview 
 
Why would you want to train / fine-tuning a model? 
 
It can help in such instances that a model does not satisfy your requirements for separating 
whatever it is you listen to. In the case of the doc writer, metal, most separation methods proved 
to be very hit or miss with this type of music because there’s so many overlapping sounds that it 
makes it difficult for that model to correctly separate the music. Roformers do a pretty decent 
job, sure, but they also come with tradeoffs. 
 
What do you need for training? 
 
A computer with an NVIDIA GPU (required), at least 8gb of VRAM or more (more is better) and 
a somewhat fast card. There are ways to optimize training further but this is the basics of what 
you need 
Or alternatively you can hire fast GPUs with cloud solutions such as vast.ai, runpod.io etc. It all 
comes down to if you have a powerful card, if it’s like 8gb, could be fine for pretraining or shifting 
a model’s target, but actual training forget it, it’s better to go cloud. 
 
You also will probably need python to train locally, grab it from here: 
https://www.python.org/downloads/ 
 
Can I train without any prior knowledge? 
 
Yes, of course. This is the job of this document, because, at least on deton’s document the 
training sections is useful but it does not provide a real “how to”. I know it could’ve helped me a 
lot. 
 
Does this document include “everything”? 
 
Well, yes and no. It does include at least everything I have learned over the course of several 
months and talking with users from the server, but there’s still things I have yet to learn 
probably! 
 
With this out of the way, let’s get into it shall we! 
 
 
 
 
 
 

https://www.python.org/downloads/


 
1 - Requirements: 
 
These are the things you’ll need for training a model: 
 

-​ A dataset (composed of official “whatever-it-is-that-you-want-to-train”, in my case 
it is Instrumentals and Vocals, so my dataset has official instrumentals and vocals 
inside) 

-​ A validation dataset: 
-​ Stem 1 
-​ Stem 2 
-​ Mixture (Stem 1 + 2 joined together) 

-​ The training repository 
-​ Models you want to train. The training repo already has some, but you can train any 

models you want as long as it has a checkpoint and a yaml (we’ll come back to these 
later, if you use UVR you already know what these are) 

 
 
2 - How to: Dataset 
 
If you do not have a dataset at your disposition already, I will just leave this video by Bas Curtiz. 
It explains EVERYTHING you need to know about creating a dataset, so I will not be detailing all 
the steps here in my document: 
https://www.youtube.com/watch?v=Wmt_0zu94L8 
 
Note: make sure the tracks inside the datasets are either in .flac or .wav. MP3 will not 
work 
 
The video shows only one pair of a dataset, but really there are two types of dataset you’d want 
to know: 
 
Type 1 dataset: 
  > [name of the folder, “MAIN_DATASET” or something] 
            > [folder: song name 1] 

         > bass.flac 
         > drums.flac 
         > other.flac 
         > vocals.flac 
> [folder: song name 2]  
         > bass.flac 
         > drums.flac 
         > other.flac 
         > vocals.flac 

The Type 1 dataset is based on the MUSDB18 dataset and is used for 4 stems models. 

https://www.youtube.com/watch?v=Wmt_0zu94L8


 
Type 2 dataset: 
  > [name of the folder, “MAIN_DATASET” or something] 
            > [folder: other] 

         > song 1 (Instrumental).flac 
         > song 2 (Instrumental).flac 
         > song 3 (Instrumental).flac 
         > song 4 (Instrumental.flac 
> [folder: vocals]  
         > song 1 (Vocals).flac 
         > song 2 (Vocals).flac 
         > song 3 (Vocals).flac 
         > song 4 (Vocals).flac 

The Type 2 dataset has only 2 folders (here “other” and “vocals”), and you dump all the 
instrumentals you have into “other”, same for “vocals”. 
 
The song length for type 2 dataset doesn’t need to match because they are selected randomly,  
split in chunks (just like when doing a separation in UVR), mixed together and entered into the 
model. 
 
deton’s doc recommends at least “200 audio files” for training, but more is better. For example, if 
you take the final version of the Metal Dataset that I am currently training on, it has 2135 
instrumentals and 1779 vocals (total 3914 tracks).  
 
In some cases, like if your training data is 10 minutes + (for each file), you can get away with a 
lower file count, because the model will still chunk the audio (in the audio => chunk_size section 
of the yaml). 
 
They need to be from official sources, otherwise for some things like vocals you could use 
Mel-Roformer or inverting to get proper vocals for that song, but I would recommend having 
official instrumentals + vocals or whatever it is you want to train. 
 
Both datasets accept any audio length. For type 1 tho, make sure they end at the same time, 
otherwise it will throw you an error when fetching the metadata (“Warning: lengths of stems 
are different for path: [C:\PATH_TO_DATASET\SONG_FOLDER]. (25666810 != 28057480”) 
 
I’ve also encountered this error while training SCNet (from 4 stems to 2 stems), make sure the 
target_instrument is set to null and instruments display  
- vocals 
- other 
(“RuntimeError: output with shape [1, 2, {chunk size}] doesn’t match with the broadcast 
shape [2, 2, {chunk size}]”) 
 



The dataset will probably take the longest time to make, because you need to scour the internet 
for official stems or instrumentals 
 
3 - How to: Validation Dataset 
 
For the validation dataset, it needs to follow this general layout: 
   > [name of the folder, “validation_dataset” or something] 
            > [folder: song name 1] 

         > mixture.wav 
         > other.wav 
         > vocals.wav 
> [folder: song name 2]  
        > mixture.wav 
        > other.wav 
       > vocals.wav 
 

This is for Type 2 datasets, for Type 1 it would also include drums.wav + bass.wav 
 

The validation dataset only accepts 16 bit wav files, so make sure to export them correctly, i’ve 
had errors thrown because it was in flac. 
 
Use tracks that are already inside your dataset because they will be easier to grab once you 
need to do the validation dataset. 
 
Validation metrics will be higher when you use full tracks. But you can also make the validation 
faster by doing 30 seconds to ~1 minute audio clips if it takes too long (be aware: doing this will 
decrease metrics) 
 
Make sure all of the audio ends at the same time. Otherwise it will throw this error at you during 
the validation stage: 
ValueError: operands could not be broadcast together with shapes 
 
 
4 - How to: The Training Repository 
 
This is the link to the training repo: 
https://github.com/ZFTurbo/Music-Source-Separation-Training 
(to download it on your computer: press the green “Code” button and then click on “Download 
as ZIP”) 
 
Extract the repo to whatever location. 
 
The first thing you’d wanna do is download one model of your choice that you want to train, for 
example: 

https://github.com/ZFTurbo/Music-Source-Separation-Training


Let’s say you want to finetune Kimberley’s Roformer, you’d go onto the repo, scroll down to the 
“Pre-trained models” section, click on “List of Pre-trained models”,  grab the “Config” and the 
“Weights” from both the links at your left. 
 
(on some occasions, “Configs” might not download but open in your browser, open notepad++, 
enter the code and then save it as .yaml) 
 
Config = yaml, where every information about your model is stored, we will come back to it 
Weights = checkpoint, the model itself 
All of the models included on the repo are open-source so be weary of that 
 
Next, you need to create a folder called “results” and place the checkpoint inside. 
Place the yaml where train.py / valid.py / inference.py is located (root of the repo) 
 
Note: Roformers have their own spectrogram loss when trained 
 
5 - A section about commands and arguments 
 
Since this is a python script, it will of course need commands to run 
These are most of the useful commands (you’d probably come back to this section a lot) 
 
COMMANDS: 
 
IMPORTANT NOTICE: RUN THESE COMMANDS WITH ADMINISTRATOR ACCESS TO THE 
COMMAND PROMPT / POWERSHELL FOR LOCAL USE 
 
Installing pytorch: 
https://pytorch.org/get-started/locally/ <= (grab the command on here) 
 
Installing the requirements: 
pip install -r requirements.txt 
 
Installing other requirements: (if it didn’t install when running the previous command): 
pip install [name-of-requirement] 
 
Changing directory: (if you’re in another folder for example) 
cd [path-to-folder] 
 
Starting training: 
python train.py --model_type [TYPE OF MODEL] --config_path [YAML] --results_path results/ 
--data_path [PATH TO DATASET] --dataset_type [1, 2, 3, 4] --num_workers 4 --device_ids 0 
--start_check_point results/[CHECKPOINT] --valid_path [PATH TO VALIDATION DATASET] 
--metric_for_scheduler sdr --metrics [OTHER METRICS YOU NEED] 
 

https://pytorch.org/get-started/locally/


Note: you WILL have to change everything in purple according to your needs, for the 
metrics side of things, you’ll need to look at the arguments part of this section. I would 
recommend copying this and using a text editor to hold onto it.  
 
Alternatively, you could edit it using the base Windows notepad, copy it and editing the 
arguments there and then save it as “run.bat” on the root of the repo, that way you can 
run it in 2 clicks without the need for copying it onto the command prompt every time. Of 
course, you can still use it with the command prompt by running “.\run.bat”. 
 
Inferencing a model: (doing a separation with a model) 
python inference.py --model_type [TYPE OF MODEL] --config_path [YAML] --start_check_point 
results/[CHECKPOINT]--input_folder input --store_dir separation_results 
 
Note: you will have to create 2 folders: “input”, where you will drop your desired file you 
wish to separate and “separation_results”, where the script will put the separated audio 
 
(FOR CLOUD ONLY) Troubleshooting the OpenBLAS error when attempting to train: 
export OPENBLAS_NUM_THREADS=1 
 
Note: this will only do it for your current session, but we’ll dive into that later if you’re 
going cloud 
 
ARGUMENTS: 
 
There are several arguments you can include for your training and inference commands. 
 

Training: 
--model_type: type of models, usually: “mdx23c | htdemucs | segm_models | 
mel_band_roformer | bs_roformer | swin_upernet | bandit” 
--config_path: path to config file 
--start_check_point: initial checkpoint to start training 
--results_path: path to the folder where results will be stored (both .ckpt files and the 
metadata) 
--data_path: path to your dataset folder 
--dataset_type: dataset type. must be 1, 2, 3 or 4, details here: 
https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.m
d 
--valid_path: path to your validation dataset folder  
--num_workers: controls how many CPU cores are used to load and process the data 
--pin_memory : controls the number of parallel data-loading workers 
--seed: controls the randomness in the training process, experiment with numbers 
--device_ids: list of gpu IDs, usually 0 
--use_multistft_loss: use MultiSTFT (Short-Time Fourier Transform) loss, spectrogram 
based 

https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md
https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md


--use_mse_loss: use default MSE loss, waveform based 
--use_l1_loss: use L1 loss 
--wandb_key: WandB (Weights and Biases) API Key 
--pre_valid: runs validation before training 
--metrics: types of metrics you can use: [sdr | l1_freq | si_sdr | neg_log_wmse | aura_stft | 
aura_mrstft | bleedless | fullness] 
--metric_for_scheduler: types of metrics that the scheduler will use to change the learning 
rate of the model: [sdr | l1_freq | si_sdr | neg_log_wmse | aura_stft | aura_mrstft | 
bleedless | fullness]  
--train_lora: Train with LoRA (Low Rank Adaptation) 
--lora_checkpoint: Initial checkpoint for LoRA weights 
 

Metrics: 
sdr : Signal to Distortion Ratio, yk what this is lol 
l1_freq: L1 Frequency, similar to sdr, spectrogram based 
si_sdr: Scale Invariant Signal to Distortion Ratio, basically sdr but it ignores the scaling between 
the target and noise 
neg_log_wmse: Negative Log Weighted Mean Square Error, another loss function 
aura_stft: Aura Short-Time Fourier Transform, focuses on the perceptual quality of separated 
audio 
aura_mrstft: Aura Multi Resolution Short-Time Fourier Transform, a more advanced aura_stft on 
multi resolutions 
bleedless: tells you how much bleed of one output is in the other (ex: tells how much vocal 
bleed there is in the instrumental), spectrogram based 
fullness: tells you how full the target instrument is, spectrogram based 
 
Remember, metrics are NUMBERS and should be only for a quick evaluation. Listen to the 
outputs produced by the model and see if it sounds good to you. 
 

Inference: 
--model_type: type of models, usually: “mdx23c | htdemucs | segm_models | 
mel_band_roformer | bs_roformer | swin_upernet | bandit” 
--config_path: path to config file 
--start_check_point: path to a checkpoint 
--input_folder: folder with mixtures to process 
--store_dir: path to store results as wav file 
--draw_spectro: this code will generate spectrograms for the resulting stems. the value 
defines for how many seconds os track spectrogram will be generated (default is 0)​  
--device_ids: list of gpu ids 
--extract_instrumental: invert vocals to get instrumental if provided (will output vocals if it 
is an instrumental model) 
--disable_detailed_pbar: disables the progress bar 
--force_cpu: forces the use of the CPU even when CUDA is available (won’t use your GPU) 
--flac_file: outputs FLAC files instead of wav 



--pcm_type: PCM type for FLAC files (PCM_16 or PCM_24) 
--use_tta: Flag that adds test time augmentation during inference (polarity and channel 
inversion). While this triples the runtime, it reduces noise and slightly improves 
prediction quality. 
--lora_checkpoint: Initial checkpoint for LoRA weights 
 
6 - YAMLs and optimal parameters 
 
The configs of the models can be modified to whatever you need 
 
A yaml has 4 sections: 

-​ audio 
-​ model 
-​ training 
-​ inference 

 
I will focus on the training parameters here, audio and models you don’t need to change too 
much, except maybe the audio batch size for conversions (both for the training repo and UVR; 
list here): 
 
dim_t to chunk_size conversion for roformer models: 
256 => 112455 (2.55 seconds) 
801 => 352800 (8.00 seconds) 
1101 => 485100 (11.00 seconds) 
1333 => 587412 (13,22 seconds)  
 
[formula is chunk_size = (dim_t -1) x hop_length] (thanks jarredou!!!) 
 
training: 
  batch_size: 1 (number of audio samples used for updating the models weights, higher 
batch sizes use more vram) 
  gradient_accumulation_steps: 1 (simulates a larger batch size without the vram 
requirement, batch_size becomes “batch_size x gradient_accumulation_steps”, models 
weights won't be updated for gradient_accumulation_steps) 
  grad_clip: 0 
  instruments: (your specific instruments inside the dataset, change them accordingly) 
  - vocals 
  - other 
  lr: 1.0e-05 (learning rate, another common example is 5.0e-06) 
  patience: 2 (how long the model will stay on that learning rate before it is reduced, set to 
2 epochs here) 
  reduce_factor: 0.95 (how much the learning rate will be reduced) 
  target_instrument: vocals (targets the desired stem that the model will focus on) 



num_epochs: 1000 (number of times you will train for num_steps before training stops, 
can be changed when loading from checkpoints) 
num_steps: 1000 (number of times the models weights will be updated per epoch (divided 
by gradient_accumulation_steps), validation will be done every time num_steps is 
reached, can be changed when loading from checkpoints) 
  augmentation: false (enables augmentations by audiomentations and pedalboard) 
  augmentation_type: null 
  use_mp3_compress: false (deprecated) 
  augmentation_mix: false (mix several stems of the same type with some probability) 
  augmentation_loudness: false (randomly change loudness of each stem) 
  augmentation_loudness_type: 1 (type 1 or 2) 
  augmentation_loudness_min: 0 
  augmentation_loudness_max: 0 
  q: 0.95 
  coarse_loss_clip: false 
  ema_momentum: 0.999 
  optimizer: adam (optimizer for training) 
  other_fix: true (it's needed for checking on multisong dataset if other is actually 
instrumental) 
  use_amp: true (enable or disable usage of mixed precision (float16) - usually it must be 
true) 
  use_torch_checkpoint: true (uses gradient checkpointing, saves vram when training on 
lower spec machines) 
 
Inference num_overlap should always be set to 1 when training (to save time). 
 
Optimal parameters for yaml takes time to figure out, so feel free to experiment with them. 
Include use_torch_checkpoint if you truly need it, or if it outputs CUDA_OutOfMemory errors 
 
 
7 - How To: Fullness Models + Model Fusion script (by Sucial) 
 
To train models for fullness, you’ll need 3 steps: 
 
1 - in train.py, there is a line titled this: “if args.model_type in ['mel_band_roformer', 
'bs_roformer']:’, place a 1 before either mel or bs [or search anything with "roformer" inside] 
 
2 - use ‘--use_multistft_loss’ as your loss argument in the training command 
 
 
 
 
 
3 - add this to your config (you can play with these if youd like): 



loss_multistft: 
  fft_sizes: 
  - 1024 
  - 2048 
  - 4096 
  hop_sizes: 
  - 512 
  - 1024 
  - 2048 
  win_lengths: 
  - 1024 
  - 2048 
  - 4096 
  window: "hann_window" 
  scale: "mel" 
  n_bins: 128 
  sample_rate: 44100 
  perceptual_weighting: false 
  w_sc: 0.0 
  w_log_mag: 1.0 
  w_lin_mag: 0.0 
  w_phs: 0.0 
  mag_distance: "L1" 
 
WARNING: Training like this will give fullness models but with lots of noise! 
 
For the Model Fusion script, you can find it here:​
https://huggingface.co/Sucial/Dereverb-Echo_Mel_Band_Roformer/blob/main/scripts/model_fusi
on.py 
(this is not exactly training related, but it still can be useful)​
​
To use it, you’d have to download the .py file and place it into MSST.​
​
Requirements:​
- All checkpoints must have the same target, you CANNOT fuse a vocal model with an 
instrumental model, for example: all the stems would be “other” if you want to fuse 2 
instrumental models 
- (NOT CONFIRMED) Possibly both checkpoints must have the same ‘base’, example: if you 
trained a model with dim 384, depth 6 and mask_estimator_depth 2, both ckpt should match 
 
Replace the ‘model_1.ckpt’ in the script with the actual yaml name of the checkpoint, same for 
the others 
This is weight based and all of them should equal to 1, for example i have them as 0.5 and 0.5 
because I’m still testing around with these. 

https://huggingface.co/Sucial/Dereverb-Echo_Mel_Band_Roformer/blob/main/scripts/model_fusion.py
https://huggingface.co/Sucial/Dereverb-Echo_Mel_Band_Roformer/blob/main/scripts/model_fusion.py


 
8 - Training from Scratch  
 
I wanted to add this before going into training specifically, because it is important to know. 
 
You CAN train from no checkpoints if for some reason fine-tuning a model doesn’t suit your 
needs and you need a model for your SPECIFIC case. 
(example: I am currently pre-training a model on my own metal dataset using my laptop then I 
will use the cloud to let it go a bit faster and with different parameters, so that in the summer I 
have some sort of a “decent” base model. Other models have always been hit or miss for me) 
[THIS EXAMPLE IS NOT WHAT I’M DOING ANYMORE BUT IM STILL LEAVING IT] 
 
To do this, just remove the --start_check_point argument from your training command. 
 
BE WARNED: The metrics WILL be bad, but only because you’re starting from nothing. If you 
use a laptop like me they probably will be even worse because of the limitation of the hardware  
If you use cloud, it will go more smoothly, just remember to use a smaller chunk_size until it 
converges (aka gets better at separating) then you could use another chunk size 
 
Example: my roformer with batch size 4 takes up the entire vram of an H200 (which is 140 gb) 
  
 
9 - Special Cases: How to shift focus from one stem to another 
 
I’ve had a case where I needed to shift focus from vocals to instrumentals and after many 
unsuccessful tries, unwa jumped in to save the day. 
 
He proposed that i’d try a “transfer learning” method, and he gave me this piece of code: 
for param in model.parameters(): 
     param.requires_grad = False 
for param in model.mask_estimators.parameters(): 
    param.requires_grad = True 
 
It needs to look like this: 

 
You’ll need to put it above line 203 in train.py: optim_params = dict() 
 



unwa said that “in my experience, it is the MaskEstimator that changes significantly when the 
target is changed”. 
What this code does is it freezes the Mel-band Projections and the Roformer Blocks of the 
model (Mel-Roformer) and just changes the last modules of the training to switch from vocals to 
instrumental, as explained by this graph:  

 
Note that while this significantly reduces the training time, it will not finetune the other blocks, 
and it doesn’t always work in all cases. In such cases, remove the code off train.py. It is fine for 
switching but not for full training. 
I pretrained my model until epoch 12 to ensure a full switch, and a further 2 epochs to ensure it 
would stay onto the instrumental (because I was skeptical). 
 
Be warned that if you put your learning rate too fast when further training, it can do weird stuff 
and say example: “inst other fullness: 49” etc, that’s because it learned too fast (I think). Like 
this for example: 

 
 
 
 
 
 
 
 
 



It’s supposed to look like this: 

 
 
10 - How to: Train 
 
a) Local Training 
 
Training locally is simple, you just open the command prompt, pop in the training command and 
let it do the rest. 
Your gpu will spin real fast, that’s how you know it works lol 
 
Example of a training screenshot: 
 

 
 
 
Train epoch lists the epoch it is training right now, it starts from 0 and then goes for as long as 
you want 
Learning rate is your learning rate, here set to 1.0e-04 
 
First progress bar is your 1000 step training bar, then it lists the “Time passed < Estimated 
Time” for the epoch to complete. 
2.23 here is seconds per iteration (how fast it goes). 
loss measures how different the output is to the original, you want that to be as low as possible 
avg_loss is just the average training loss 



 
Second progress bar is your validation data progress bar, here it’s very long because I used full 
tracks for my validation (and i only had 6)​
6/6 is your number of tracks inside the validation number 
“Time passed < Estimated Time” for the validation 
Seconds per iteration for validation 
l1_freq_other lists the l1 frequency of the track it is validating, here track 4 (for epoch 3), it’s at 
13.4 
bleedless_other and lists the bleedless of that track’s instrumental, fullness_other is the same 
 
Num(ber) overlap is your INFERENCE overlap number, here set to 4 (set it to 1, it’ll be much 
quicker) 
 
Inst_other_fullness / bleedless / l1_freq / sdr lists the average results of the instrumental stem if 
you were to convert a track using this checkpoint. 
 
One thing to know is that for some reason: 

-​ If fullness increases, bleedless decreases 
-​ If bleedless increases, fullness decreases 

 
so you might want to take this into consideration 
 
What else to do? 
Well, training is a waiting game, and if you’re training locally you cannot really spin up a game to 
play because you will use your GPU, so you might want to do something else because training 
is very boring. 
 
However, that might not be the case if you’re going for the other option: 
 
 
b) - Cloud training 
 
This is a step by step tutorial on how to use vast.ai, because it is really not simple to use and 
while there’s information out there, it’s not really representative of our use case here. 
 
Be warned, these instructions might be a bit confusing! 
 
 
1 - Put the training repo + both datasets on Google Drive inside a folder of your preference (and 
make sure to have at least 100gb of storage). 
Vast.ai offers a direct connection to your drive in the 'CLOUD' section on the main website 
(below INSTANCES), click on the 'Connect Google Drive' button, name the connection whatever 
name and make the connection. 



2 - Select a GPU to rent in the 'SEARCH' section, make sure to take the 'PyTorch (cuDNN 
Runtime)' template, with Cuda 12.4, SSH and Jupyter. Make sure to have enough disk space as 
well, but that will also change the total price of your rent. 

​
3 - Once the instance is created, it will pop up in the 'INSTANCES' section. Wait for it to load. 
Enter it, and create a folder where it can dump all of the data from your drive in. (mine is just 
called TRAINING_STUFF). Do not close this page, return to 'INSTANCES' and click on the 
cloud icon on the instance. It will show a message saying 'Upload/Download Data from Cloud 
Providers'. Enter your folder path (example: if you put the training data in a folder called 
test, the path would be '/test').  

Do the same for the output path, in my case it's /TRAINING_STUFF. Let it do its thing. 

4 - When it's done, you should have all of your data inside your Jupyter Notebook. Copy the 
training command from earlier in this document, and add the data path to the dataset and 
validation dataset AND MAKE SURE TO ADD A SLASH before and after the path.                            
Example: '--data_path /TRAINING_STUFF/DATA/2stem_metal_dataset/' would be the full 
argument for the dataset path. Once it's all compete, click on 'File' > 'New' > 'Terminal' 

(this next part will be really annoying!) Paste in these commands in the terminal in sequence 
(one after the other): 

-​ Change directory 
-​ Install requirements 
-​ OpenBLAS troubleshooting command [this appeared when I was at the metadata 

stage, but it turned out to be something else entirely separate from this error and idk 
what it is] 

-​ Training command 

if it shows an error (no_module_named[x]), do pip install [x] + repaste training command every 
time until you see the 'Collecting Metadata' part. Once it's done, it should start collecting the 
metadata and start the training.​
 
all of the missing things: wandb | soundfile | auraloss | audiomentations | pedalboard | 
ml_collections | omegaconf | einops | beartype | rotary_embedding_torch 

At the end of installing the requirements, it will show this error: 

ERROR: ERROR: Failed to build installable wheels for some pyproject.toml based projects 
(wxpython, diffq, pesq) 

There’s 2 solutions: 

 



(thanks becruily for the commands!) 

if pesq fail - sudo apt-get install build-essential  

pip install numpy==1.26.4 

Or just remove wx-python from requirements.txt, because it is used for the GUI only and not for 
training and “makes requirements install crash on some systems (like colab)” (jarredou) 

 

11 - The End: 

Well, I think that mostly covers it. Of course, more experienced people are invited to modify this 
document as they wish.  

I would like to thank: 

-​ Bas Curtiz, for helping me with the metal dataset when I started training and also for his 
guide about this very topic. 

-​ unwa, for helping me setting up the training repo on the advice of Bas, he has been an 
incredible help and I hope this guide will help as much as he helped me. Thank you! 

-​ ZFTurbo, for providing the resources to even train a model in the first place and for 
trusting me with a private model that I am fine-tuning right now! I also want to cite your 
help for the validation dataset too. 

-​ Kimberley Jensen, for providing the best base roformer and for helping me set up the 
cloud training process. 

-​ jarredou and becruily for additional help when troubleshooting errors. 
-​ YOU, the newbie reading this document! I hope this helps you to know everything you 

need about training! 


	Tab 1 

