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1.​ Progress of Current Milestone (Progress Matrix) 
 
Task Completion  

(%) 
Julian SJ Nic Azim To do 

1. Develop, and train 
a CNN Model with a 
small dataset ~500 
patients 

100% 25% 25% 25% 25%  

2. Test, and measure 
the model 
performance 

100% 0% 0% 50% 50%  

3. Test different data 
distribution to help 
imbalance data 
composition 

60% 15% 15% 15% 15% Our model is still in early stages of 
development so it is hard to 
determine the impact of an 
imbalanced dataset. 

4. Implement the 
ECG extraction 
scripts to the GUI 

100% 0% 100% 0% 0%  

5. Research a basic 
tutorial on creating a 
CNN in PyTorch and 
on ways to improve 
the accuracy and 
efficiency of the 
model as well as 
training and ways to 
evaluate the 
improvements over 
time. 

100% 25% 25% 25% 25%  

 
2.​ Discussion (at least a few sentences, ie a paragraph) of each accomplished task 

(and obstacles) for the current Milestone: 
 
Task 1: After reviewing examples and tutorials in PyTorch.org we noticed that the dataset that 
we had previously designed will not work for training an image classifier. The data was not 
returning the enumeration of the assessment. The assessment was getting returned as a string, 
which will not work for the tensor. This was a simple fix adding an if statement to the dataset 
class to return an int value ‘0’ for normal assessment and for ‘1’ abnormal. After we defined a 
simple Convolutional Neural Network model with 4 layers just to test that our data would get 
loaded into the model and that the image tensors are getting accepted by the model. We are 
using the torch CrossEntropyLoss() function to calculate the loss and the SGD with momentum 
as the optimizer. The training is defined in a simple loop that iterates through the training loader 



and feeds the inputs to the model and optimizes. Next, we iterate through the test loader to 
evaluate the performance of the model that was trained. Early on we noticed that the model was 
always guessing, with something having a 100% prediction rate for normals and 0% for 
abnormals. This was confirmed once we implemented the data split explained in more detail in 
task 3. 
Task 2: Implementing the evaluation portion was relatively simple as tallying the number of 
correct predictions for normals and abnormals allowed us to calculate the true positive and false 
positive rates. The only obstacle was that the confusion matrix had to be created manually as 
the library functions that could create a confusion matrix required arrays for the actual and 
predicted values, but our program stored these values as tensors. 
Task 3: After our first successful training, testing and evaluation pipeline we noticed that the 
model was always guessing. We had a few runs with very good precision 90% of the normals 
and abnormals getting predicted correctly. We believed that this was the cause because our 
training and testing datasets were probably using the same images from the pool of ECGs. 
Afterwards we implemented a 70/30 split using the torch random_split() function to split the 
dataset into two non-overlapping new datasets of given lengths. 70% of the dataset goes to the 
raining and 30% for testing. After these changes to the data loaders we noticed a much better 
representation of the guessing that our data performed. However, there were still a few times 
when we would have a very high accuracy which was probably to do with the random 
distribution of the training dataset. We tried to fix these issues by testing different distributions of 
normal/abnormal ECGs for the training dataset while leaving the testing set at a random split. 
Because of our model simplicity we could not determine the best data distribution. We need to 
improve the model architecture as well as continue to test different data distributions.  
Task 4: The GUI has been updated with additional features where users can extract ECG 
graphs using their preferred ECG Machine Model and convert them into PNG files. The ECG 
Diagnosis Results Display has been completed. Users are now able to view the ECG graph 
from the selected patient. Once we have the ECG Interpretation successfully completed, we will 
add this feature to the GUI and users will then be able to view the interpretation results. 
Task 5: Every team member looked over various different tutorials and articles in order to better 
gather information rather than all looking at the same sources. The information each member 
found to be useful was shared with the rest of the team in order to consolidate all of the 
research together. One obstacle that was faced is that due to the myriad ways one could 
employ a CNN in Pytorch, sometimes information from one source would be incompatible with 
information from another source. This difficulty was overcome by choosing the implementation 
that was the farthest along rather than continuing in four separate directions. 
 
 

3.​ Discussion (at least a few sentences, ie a paragraph) of contribution of each team 
member to the current Milestone: 

 
Julian watched 3 tutorials from different developers and websites in order to help develop the 
architecture for the neural network. This included starting to understand how a CNN is built, 
what it’s composed of, and the mathematics behind it. The tutorials helped determine the 
parameters of the layers within our CNN and to help visualize how the learning process of said 



network takes place. Julian also helped with making sure that the dataset that we were using 
was balanced (~50% for abnormal and normal ECGs) in order to ensure that the CNN wasn’t 
being trained on an imbalanced dataset since our initial data distribution was heavily skewed 
towards normal ECGs (97% of all ECGs were normal). 
 
Azim read 2 articles on the basics of CNNs in order to get a better understanding of what they 
do, how they work, and how they are structured. He also read through an online course on deep 
learning in general alongside how to implement some of its concepts through Pytorch. Multiple 
articles on interpreting ECGs were also looked into in order to get an idea of which layers to use 
as well as how to structure them in the CNN’s architecture for what the team is trying to 
accomplish. Azim also implemented the true positive rate and false positive rate calculations 
with a confusion matrix for the evaluation portion of the CNN. 
 
SJ completed the features that were needed to be added into the GUI. In the Extraction tab, 
users can extract ECG graphs by browsing their file path and choosing their preferred ECG 
Machine Model and converting them into PNG files. In the Query tab, users can now be able to 
view the ECG graph from the selected patient. SJ had to implement all the features that were 
needed for the GUI in the first two weeks of the semester so that he could join his fellow team 
members and focus on the CNN portion. SJ spent a lot of time researching Convolutional 
Neural Network and identifying the goal/purpose of each part of building a CNN. He had to 
catch up with understanding the concepts of a basic Neural Network and then followed by 
Convolutional Neural Network. 
 
Nicangel worked on fixing the data loader which was not returning the correct labels for the 
normals and abnormal ECGs. After the data loader was working properly he started to follow 
examples and tutorials to develop a CNN model using the torch ‘nn’ modules. The first 
implementation was using the sequential function to forward the input through the convolute 
layers. This had to be done because resources in the GPU were too loaded and CUDA could 
not run any other way. Note this was only the case for CUDA as in CPU it would work but 
require additional time. Also he implemented the 70/30 random data split, after this Nic focused 
on the learning how to visualize feature maps, as we wanted to improve the layer in the model 
but we could not think of what our current model looked like. 
 

4.​ Plan for the next Milestone 
 

Task Julian SJ Nic Azim 

1. Train at least a few 
hundred epochs, and 
for every 100, calculate 
the confusion matrix 
and TPF/FPR check 
for improvements. 

25% 25% 25% 25% 



2. Vary the ratio of 
abnormals of the 
training set (look into 
oversampling of 
abnormal ECGs) 

25% 25% 25% 25% 

3. Generate a 
randomly selected 
dataset with a 98%/2% 
normal/abnormal using 
an 80%/20% 
training/testing split.  

25% 25% 25% 25% 

4. Research and 
improve the model’s 
architecture 

25% 25% 25% 25% 

5. Create poster for 
Senior Design 
Showcase 

25% 25% 25% 25% 

6. Determine the 
various filter sizes for 
our convolutional 
layers 

25% 25% 25% 25% 

 
5.​ Discussion (at least a few sentences, ie a paragraph) of each planned task for the 

next Milestone: 
Task 1: In order to see improvements on the CNN model we will need to increase the number of 
epochs. Following the recommendations from our advisor we will fix our dataset distribution to 
represent the 2-3% abnormal rate from the client dataset. Once that task is completed we will 
increase the number of epochs for the model to run in a loop over a few hundred epochs. Every 
100 epoch we will log the TPR and FPR as well as saving an image of the confusion matrix. 
Doing this will allow us to visualize if the model is learning over each iteration. We will plot the 
number of epochs in the X-axis and the TPR and FPR in the Y-axis. We will be looking at the 
changes in the TPR and FPR values, if we have a good model there should be a close to 100% 
TPR and the FPR should be minimized over each iteration. 
Task 2:  We need to look at varying the abnormal ratio in our data via oversampling abnormals 
in order to have 2, 5, 10, 15, 20… ,50% of abnormal ECGs in the training dataset, whilst 
observing TPR and FPR in order to determine if the model is improving. This increase in 
abnormal ECGs can be done by duplicating the current 2%. To validate the improvements of the 
model with the different ratio we will need to run our model over a few hundred epochs as 
explained in task 1. 
Task 3: For our dataset, we will be creating a randomly selected 500 dataset out of the 12000 
dataset  with the rate of 98% for normals and 2% for abnormal to avoid getting the same 
dataset. We will need to check and maintain the distribution of normal vs. abnormal which 



should be roughly 2-3% abnormal. The data split for training and testing will be 80% and 20% 
because that is what our client wants it to be.  
Task 4: As we have mentioned we do not have a good model that can predict normalities and 
abnormalities as it is only 4 convolutional layers. We still need a better understanding of how to 
implement different layers that can improve the model. We also need to check our layer 
parameters, as this is another major factor that determines the model’s success. 
Task 5: For the Senior Design Showcase, we are required to create a poster of our project. We 
might use Canva to create our poster and follow the suggested tips and tricks to create an 
effective poster. 
Task 6:  In order to properly capture the features in our ECG images, we need to determine the 
proper filter size. We would start by determining the size of each individual peak and trough of a 
heartbeat as well as the size of one whole heartbeat. These would compose the first two 
convolutional layers of our model, with subsequent layers being composed of multiple 
heartbeats. We will need to experiment with these different sizes to determine what works best 
for our model. 
 

6.​ Date(s) of meeting(s) with Client during the current milestone: 
●​ 01/21/2022 
●​ 02/11/2022 

 
7.​ Client feedback on the current milestone: 

1.​ Try limiting age range (14-17, 14-18) 
a.​ Could also try limiting other patient param. 

2.​ Time markers for non-cardia machines (out of scope/ possible after semester 
implementation) 

3.​ Just identifying normals as a starting point 
4.​ Schedule meeting w/ Chan and Klynton to discuss direction of project  

a.​ How many models? 
b.​ Workload 
c.​ Types of neural networks 
d.​ Ecg image vs numeric data 
e.​ Normal/abnormal vs normal/other 

5.​ Publication of results? 
6.​ Create Requirements file so client can run our code 

8.​ Date(s) of meeting(s) with Faculty Advisor during the current milestone: 
●​ 01/31/2022 
●​ 02/14/2022 

9.​ Faculty Advisor feedback on each task for the current Milestone: 
1.​ Use a simple tutorial to understand convolution and pooling layers and some of 

the parameters for them 
a.​ Next time ask what pooling layer means, how and why 

2.​ Set up the pipeline (training, test and evaluation)  
3.​ https://towardsdatascience.com/simple-introduction-to-convolutional-neural-netw

orks-cdf8d3077bac 

https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac


4.​ Fix the current confusion matrix to look like this: 

 

5.​ Randomly select a 50/50 dataset from the cleaned data, and stick with the same 
initially randomly selected 500 rows of data. 

a.​ Check the distribution of normal vs. abnormal, should be roughly 2-3% 
abnormal. 

b.​ 70/30 or 80/20 data split for training/testing 
6.​ Vary the abnormal ratio in the training set  

a.​ Increase : 2, 5, 10, 15, 20… ,50 of abnormal in the training dataset 
b.​ Duplicate the abnormal to achieve the desirable abnormal/normal ratio 

7.​ Measure TPR and FPR, which there’s usually a tradeoff between the two; as 
TPR increases so does FPR. 

a.​ The desirable TPR is 100% 
b.​ Minimize FPR 

8.​ Train at least a few hundred epochs, and for every 100, calculate the confusion 
matrix and TPF FPR to see if there’s improvement. X axis num epochs, y axis 
TPR FPR. This will help us see if it's improving. 

9.​ Research what determines filter size by looking how many pixels represent the 
different parts of the heartbeat.  

a.​ how many pixels capture individually the 4 stages of a heartbeat. Maybe 
¼ of the heartbeat is the filter size for the first layer 

b.​ for the next layer the filter size would be an entire heartbeat.  
c.​ Posterior convolutional layers would have filter sizes that encompass this 

pattern (they would then encompass multiple heartbeats). 
d.​ Draw a picture and take into account stride in order to determine each 

filter size. 

Faculty Advisor Signature: _______________________________ Date: ________ 

10.​Evaluation by Faculty Advisor 

Julian 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 



SJ 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 

Azim 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 

Nicangel 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 

Faculty Advisor Signature: _______________________________ Date: ________ 


