
Workers and event loops

This all starts from this code and leads to broken toolbox.

Because of a Worker using Atomics.wait, the worker thread is paused on this particular C++
line:
https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#3033-3034
WorkerPrivate::DoRunLoop {

...
// Process a single runnable from the main queue.
NS_ProcessNextEvent(mThread, false);

From my investigation, the C++ code is stuck pending on this line.
One surprise is that the second argument aMayWait seems to indicate if the call should
pause or not. And I would assume this call should not block, while it does.
I’ve not tried to debug this deeper within NS_ProcessNextEvent as this is very generic
code used with about anything…

SpinEventLoopUntil and how breakpoints work on the main
thread
It is interesting to see how SpinEventLoopUntil is implemented in C++.
It actually uses this same NS_ProcessNextEvent method, but with a true second argument:
(permalink)

while (!aPredicate()) {
bool didSomething = NS_ProcessNextEvent(thread, true);

Note that this SpinEventLoopUntil method is the one also used by Debugger C++ API
(permalink)

if (!SpinEventLoopUntil([&]() { return mNestedLoopLevel <
nestLevel; })) {

This is the API I recently described, which is a key component to implement breakpoints.
This is called from here in the thread actor universe:
(permalink)
​ xpcInspector.enterNestedEventLoop(this);
(permalink)

this._nestedEventLoop.enter();
(permalink)

return this.threadActor._pauseAndRespond(frame, reason);
(permalink)

bool ok = CallMethodIfPresent(cx, handler, "hit", 1,
scriptFrame.address(), &rv);

https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#2907-3060
https://bugzilla.mozilla.org/show_bug.cgi?id=1706703#c17
https://searchfox.org/mozilla-central/source/js/src/builtin/AtomicsObject.cpp#558
https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#3033-3034
https://searchfox.org/mozilla-central/source/xpcom/threads/nsThreadUtils.cpp#529
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/xpcom/threads/SpinEventLoopUntil.h#175-184
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/devtools/platform/nsJSInspector.cpp#70-83
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/devtools/server/actors/utils/event-loop.js#73-82
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/devtools/server/actors/thread.js#981
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/devtools/server/actors/breakpoint.js#220
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/js/src/debugger/Debugger.cpp#2624

(permalink)
​ if (DebugAPI::hasBreakpointsAt(script, REGS.pc)) {

if (!DebugAPI::onTrap(cx)) {

Basically, the JS engine would call breakpoint.js if a breakpoint is registered for the current
line of JS being executed. This code will run from the debuggee thread, and will be ultimately
paused by the call to NS_ProcessNextEvent(thread, true); which will resume once
the “spin event loop until” condition switches.

The condition will be switched when we call
xpcInspector.exitNestedEventLoop(this) which, I suppose, is called from
another thread. This is *not* triggered from the debugee thread, instead, it is resumed from a
RDP request, itself being probably spawn from the nsISocketTransportService thread.
And it is interesting to note that nsISocketTransportService is having a very similar for..loop,
also using NS_ProcessNextEvent!
(permalink)

NS_ProcessNextEvent(mRawThread);

Having a distinct thread, via the socket service is probably what explains why we can still
execute stuff in the content process, while the “main thread” is paused.

Breakpoints on the worker thread
Now, in the worker thread, we can’t use any XPCOM, and so can’t use xpcInspector
interface. Nor can we use SpinEventLoopUntil as we don’t have access to Services either.
Instead for fake xpcInspector in order to call another eventEventLoop method:
https://searchfox.org/mozilla-central/source/devtools/shared/worker/loader.js#477-480

enterNestedEventLoop: function(requestor) {
requestors.push(requestor);
scope.enterEventLoop();

(permalink)
void WorkerDebuggerGlobalScope::EnterEventLoop() {

MOZ_KnownLive(mWorkerPrivate)->EnterDebuggerEventLoop();
(permalink)
WorkerPrivate::EnterDebuggerEventLoop(){
​ ...

std::queue<RefPtr<MicroTaskRunnable>>& debuggerMtQueue =
ccjscx->GetDebuggerMicroTaskQueue();
while (mControlQueue.IsEmpty() &&
 !(debuggerRunnablesPending = !mDebuggerQueue.IsEmpty()) &&
 debuggerMtQueue.empty()) {
 WaitForWorkerEvents();
}
ProcessAllControlRunnablesLocked();

https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/js/src/vm/Interpreter.cpp#1941
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/netwerk/base/nsSocketTransportService2.cpp#1198
https://searchfox.org/mozilla-central/source/devtools/shared/worker/loader.js#477-480
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/dom/workers/WorkerScope.cpp#1324-1330
https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/dom/workers/WorkerPrivate.cpp#5075-5083

Instead of using NS_ProcessNextEvent, we have this WaitForWorkerEvents()
(permalink)

void WorkerPrivate::WaitForWorkerEvents() {
mCondVar.Wait();

And this waits for a new task to be dispatched. mCondVar is a kind of mutex, which will be
released anytime we dispatch a new task in the worker:

●​ a regular task, from WorkerThread::Dispatch (worker script will be run in such task
type)

●​ a debugger task, from WorkerPrivate::DispatchDebuggerRunnable
●​ a control task, from WorkerPrivate::DispatchControlRunnable

Each task type is having its own queue. This allows WorkerPrivate::DoRunLoop and
WorkerPrivate::EnterDebuggerEventLoop to triage the various task in a precise
order.

What next?
●​ Is it expected that NS_ProcessNextEvent(mThread, false); can be blocked

by Atomics.wait?
●​ Should debugger scripts in the worker thread run in a distinct thread, like what we do

for main thread debugging ?
●​ RemoteAgent setup and incoming Bidi architecture may help us mitigate such issues

by having some code running from the main thread.
●​ Any other idea? Questions?

Meeting notes
●​ The discussion is about broken Toolbox when debugging/attaching Workers that

might be frozen by using Atomic.wait
●​ Toolbox can be broken only when you open Debugger panel since it’s listening to

worker targets - and the worker is stack on Atomic.wait()
●​ It isn’t only about the Debugger - there is also the Console panel involved.
●​ See this code

○​ There are multiple event loops
○​ There is GC involved
○​ Looks like we are also executing pieces of JS code

●​

https://searchfox.org/mozilla-central/rev/4c8627a76e2e0a9b49c2b673424da478e08715ad/dom/workers/WorkerPrivate.cpp#4139
https://searchfox.org/mozilla-central/source/dom/workers/WorkerThread.cpp#301
https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#1583
https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#1556
https://searchfox.org/mozilla-central/source/dom/workers/WorkerPrivate.cpp#2907-3060

	Workers and event loops
	SpinEventLoopUntil and how breakpoints work on the main thread
	Breakpoints on the worker thread
	What next?

	Meeting notes

