Seminar on Failures Modes in Machine Learning (FAILML) (2360839, Spring 2025)

Time: Mondays 13:30-15:30

Place: Taub 3 (may change - check before semester starts)

Syllabus: https://cs.technion.ac.il/courses/all/224/236839.pdf

Course website: https://webcourse.cs.technion.ac.il/02360839

* please register on webcourse to make sure you get all course-related announcements *

Outline:

- Every week we will meet to hear about papers related to how machine learning can fail, and how it can be fixed.
- In each session, two students will present two papers (45 min. each), and two students will present a short, critical discussion on the papers (5 min. each).
- Both papers will be on the same (or closely related) topic, and in each week we will explore a different topic.
- Each student in the course must sign up for two papers (spanning two different meetings): one as a presenter, and one as a discussant. The requirements of each role are described next.

Presenters:

- Your task here is to choose a paper to present, read it thoroughly, and present it to the class in a clear and didactic manner.
- The available papers vary in their focus, difficulty, length, and technical depth. Your grade will be relative to the difficulty of your chosen paper. For example, if you choose an 'easy' paper, you must be exceptional when presenting; if you choose a 'hard' paper, you'll be given some slack.
- Regardless of the paper's difficulty fitting any full length paper into a 45 min. talk is challenging. Your primary goal (and an important factor in your grade) is to be able to pick out and present the most relevant parts of the paper, in a way that is a coherent and complete summary of the paper. It will be your job to "separate the wheat from the chaff".
- Please practice your presentation to make sure it is streamlined, clear, and engaging.
- Note: some papers have multiple versions available online please use the link provided in the table below.

Discussants:

- In addition to the main paper presentations, in each week we will also have two students (one per paper) take on the role of discussants (or 'critics') whose role is to present a short, critical, alternative take on the papers presented.
- Show critical thinking! Identify implicit assumptions, hidden weaknesses, and lurking limitations. Consider the paper within a broader, realistic setting. Think about the bigger picture. In any case present your case in a respectful and constructive manner.
- Be precise and to the point you only have 5 minutes!
- More details will be given in our first meeting.

Signing up for papers:

- The dates, topics, and paper titles are given in the table below.
- Sign-up begins Sunday 23/3/25 at 10:00, and is on a first-come first serve basis. At that time, the table will become editable, and you will be able to sketch yourself in.
- Needless to say: DO NOT EDIT A TABLE ENTRY IF IT HAS ALREADY BEEN TAKEN.
- Be sure to go over the papers until that time, and choose with care.
- Students presenting in the same meeting can choose to work on and present the two papers **jointly**, or **individually**. You will need to make this decision when signing up to papers (more details below), so be sure to coordinate with your partner first!
- Don't forget to sign up to two papers once as a presenter, and once as a discussant.
- **Note**: In extreme cases, there is a chance that I may have to reassign you (but if this happens, it is for good reason). So until you receive confirmation, please know that signing up to a paper does not guarantee that this is the paper you'll be presenting.
- Extra slack will be given to the students presenting first!

Dates and papers: (*notice special time and/or day)

#	date	topic	paper	presenter	discussant
1	31/3		Intro lecture		
2.1		domain adaptation	Domain-Adversarial Neural Networks	Adi Grauer	Lior Dvir
2.2			Understanding Robust Learning through the Lens of Representation Similarities	Lior Dvir	
3.1		domain adaptation	Joint distribution optimal transportation for domain adaptation	Omer ledovnik	Omer Ben Laish

3.2		out-of-distribut ion	Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization	Tal Haklay	Yara Shamshoum
4.1	28/4*	out-of-distribut ion	Fishr: Invariant Gradient Variances for Out-of-Distribution Generalization		Adi Grauer
4.2		test-time adaptation	Test-Time Training with Self-Supervision for Generalization under Distribution Shifts		Moriya Menachem
5.1	5/5	worst-group	Why does Throwing Away Data Improve Worst-Group Error?	Amit Ben Yossef	Dovid Parnas
5.2		distributionally robust optimization	Distributionally Robust Neural Networks For Group Shifts: On The Importance Of Regularization For Worst-Case Generalization	Tomer Ashuach	Tal Haklay
6.1	12/5	distributionally robust optimization	Just Train Twice: Improving Group Robustness without Training Group Information	Ram Binshtock	Yazan Othman
6.2		distributionally robust optimization	Modeling the Second Player in Distributionally Robust Optimization	Liran Cohen	Tomer Bitan
7.1	19/5	shortcut learning	On the Foundations of Shortcut Learning	Elizabet Khaimov	Roy Maor Lotan
7.2		memorization	Learning and Memorization	Yara Shamshoum	Amit Ben Yossef
8.1	26/5	invariance	Invariant Representations without Adversarial Training	Roy Maor Lotan	Arkadi Piven
8.2		invariance	Discovering Environments with XRM	Moriya Menachem	

9.1	9/6	adversarial	MMA Training: Direct Input Space Margin Maximization Through Adversarial Training	Omer Ben Laish	Ram Binshtock
9.2		adversarial	Attacks Which Do Not Kill Training Make Adversarial Learning Stronger	Yazan Othman	1 Liran Cohen
10.1	16/6	adversarial	Theoretically Principled Trade-off between Robustness and Accuracy	Dovid Parnas	Neta Katz
10.2		adversarial	A Closer Look at Accuracy vs. Robustness	Neta Katz	Elizabet Khaimov
11.1	23/6	strategic classification	Strategic Classification Made Practical	Dan Kalifa	Bana Sadi
11.2		strategic classification	Generalized Strategic Classification and the Case of Aligned Incentives	Arkadi Piven	Omer ledovnik
12.1	30/6	self-selection	Classification Under Strategic Self-Selection	Bana Sadi	Dan Kalifa
12.2		strategic classification	Adversaries With Incentives: A Strategic Alternative to Adversarial Robustness	Tomer Bitan	Tomer Ashuach
13.1	7/7	performative prediction	Outside the Echo Chamber: Optimizing the Performative Risk		
13.2		performative prediction	Optimal Classification under Performative Distribution Shift		