
Extension points:
●​ Policies
●​ Routes
●​ Services + Dao
●​ Credential types
●​ ExpressJS custom middleware
●​ Models
●​ Admin
●​ HTTP and HTTPS servers custom events (like upgrade for websockets)
●​ CLI
●​ Request\Response Transformation

Notes:
●​ plugins are mounted before processing gateway.config to have all policies available in config
●​ yaml config files can contain other sections, we are not restricting schema
●​ one plugin per package
●​ multiple policies, conditions etc. per plugin

Install

system.config.yml

plugins:​

 'npm-plugin-name'​

 prop1: test # settings for plugin

I would personally leave it the only way to install. Another variant is convention based in gateway.config.yml

policies:​

 - test

will do npm i express-gateway-plugin-test I see the only problem is that we do not control these modules,
they look like official supported, since anyone can publish with name express-gateway-plugin-bla

Uninstall

remove plugin definition, all app data will be preserved (do manual cleanup if needed)

Folder structure

I would not force any opinion on how people should structure code. developers can always do
require('./my-code')

some plugins will be 10 lines and no need for folders at all, some will be with cross dependencies (let say
policy to access service directly) so limited context in folder may not be enough. Documentation example
can provide folder structure as reference
Policy
Interesting injection points in apigee, especially “post response” part where you execute something and not
adding latency to client call. In our case logging could be much better in this way

http://docs.apigee.com/api-services/reference/javascript-policy

http://docs.apigee.com/api-services/reference/javascript-policy

module.exports = function(manifest){ ​
 // it can be explicit `manifest` or it can be just 'this'​
 manifest.config // access to configuration {gateway, system, models} ​
​
 manifest.config.models.Roles = {​
 properties: {​
 name: {isRequired: true, isMutable: true},​
 }​
 } // some new model definition​
 ​
 //New service declaration: oauth2 plugin will have code like: ​
 manifest.services.tokenService = {} ​
 ​
 // Existing Service: to avoid refactoring we can do decorators

 // Or Strategy if we have time to refactor existing services

 // (In this case main issue is to define common interface) ​
 manifest.credentialService = decorator(manifest.credentialService)​
 decorator = function(credSrv){​
 let prev = credSrv.getCredential​
 credSrv.getCredential = function (id, type, options) {​
 if(type === 'jwt'){ /* do jwt magic */ }​
 else { return prev.apply(arguments) } ​
 }​
 } ​
 ​
 //dao objects exposed as property of a service​
 manifest.credentialService.dao.redis // this is lib/services/credentials/credential.dao.js​
 // same trick with decorators to change behavior​
 // the only problem with decorators vs strategy is that you can accidentally override other modules​
 ​
 manifest.conditions.push(function(conditionManifest){}) ​
​
 // policyManifest.params, policyManifest​
 manifest.policies.push(function(policyManifest) { }) ​
// define new gateway routes/middlewares​
 manifest.gatewayExtensions.push(function(gatewayExpressInstance) {})​
​
// define new Admin routes/middlewares​
 manifest.adminExtensions.push(function(adminExpressInstance) {})​
​
 manifest.eventBus.on('serverReady', ({httpServer, httpsServer})=> {​
 httpServer.on('upgrade', ()=>{}) // integrate websockets​
 httpsServer.on('upgrade', ()=>{}) // integrate secure websockets ​
 }) ​
​
// hotReloadManifest = {type: "gateway|system", config } // config is the new config​
 manifest.eventBus.on('hot-reload', hotReloadManifest => {}) ​
// command is {namespace, subcommands : [{filepath, namespace}] }​
 manifest.cli.register(command) {}

}

Request\Response Transformation

 manifest.policies.push(function(policyManifest) { ​
 ​
​ Return{​
 policy: function (req, res, next) {​
 },​
 reqTransformations: [NodeTransformStream],​
 resTransformations: [NodeTransformStream] ​
}​
})

I suggest to apply reqTransformation right after pipeline was identified and
resTransformations similar to:
https://github.com/koumoul-dev/node-http-proxy/commit/4db8736ed6d28018d5cb2f541370e6de0972d534

https://github.com/koumoul-dev/node-http-proxy/commit/4db8736ed6d28018d5cb2f541370e6de0972d534

	Install
	Uninstall
	Folder structure
	Request\Response Transformation

