
PostfixAdmin-on Ubuntu 20.04 Mail Server

PostfixAdmin Features

●​ manage mailboxes, virtual domains, and aliases
●​ vacation/out-of-office messages (Personally I think it’s better done in Roundcube webmail)
●​ alias domains (forwarding one domain to another with recipient validation)
●​ users can manage their own mailbox (change alias, password and vacation message)
●​ quota support for single mailboxes and total quota of a domain
●​ fetchmail integration: You can fetch emails from your original email address to your new email address.
●​ command-line client postfixadmin-cli for those who don’t want to click around in a web interface 😉

Note: Once you finish part 3, you can no longer use local Unix accounts as email addresses. You must create email addresses from the
PostfixAdmin web interface.

Prerequisites

It’s required that you have followed part 1 and part 2 of this tutorial series before continuing to read this article. If you followed mail server
tutorials on other websites, I recommend purging your configurations (sudo apt purge postfix dovecot-core) and start over with my
tutorial series, so you are not going to be confused by different setup processes.

Once the above requirements are met, let’s install and configure PostfixAdmin.

Step 1: Install MariaDB Database Server

PostfixAdmin is written in PHP and requires a database (MySQL/MariaDB, PostgreSQL or SQLite). This article will use MariaDB database, which
is a drop-in replacement for MySQL. It is developed by former members of MySQL team who are concerned that Oracle might turn MySQL into a
closed-source product. Enter the following command to install MariaDB on Ubuntu 20.04.

sudo apt install mariadb-server mariadb-client

After it’s installed, MariaDB server should be automatically started. Use systemctl to check its status.

https://www.linuxbabe.com/ubuntu/install-roundcube-webmail-ubuntu-20-04-apache-nginx#out-of-office
https://www.linuxbabe.com/mail-server/user-quota-postfixadmin-dovecot
https://www.linuxbabe.com/mail-server/setup-basic-postfix-mail-sever-ubuntu
https://www.linuxbabe.com/mail-server/secure-email-server-ubuntu-postfix-dovecot

systemctl status mariadb

Output:

● mariadb.service - MariaDB 10.3.22 database server

 Loaded: loaded (/lib/systemd/system/mariadb.service; enabled; vendor preset: enabled)

 Active: active (running) since Fri 2020-04-10 14:19:16 UTC; 18s ago

 Docs: man:mysqld(8)

 https://mariadb.com/kb/en/library/systemd/

 Main PID: 9161 (mysqld)

 Status: "Taking your SQL requests now..."

 Tasks: 31 (limit: 9451)

 Memory: 64.7M

 CGroup: /system.slice/mariadb.service

 └─9161 /usr/sbin/mysqld

If it’s not running, start it with this command:

sudo systemctl start mariadb

To enable MariaDB to automatically start at boot time, run

sudo systemctl enable mariadb

Now run the post-installation security script.

sudo mysql_secure_installation

When it asks you to enter MariaDB root password, press Enter key as the root password isn’t set yet. Then enter y to set the root password for
MariaDB server.

Next, you can press Enter to answer all remaining questions, which will remove anonymous user, disable remote root login and remove test
database. This step is a basic requirement for MariaDB database security. (Notice that Y is capitalized, which means it is the default answer.)

Step 2: Install PostfixAdmin on Ubuntu 20.04 Server

Log into your mail server. Because some readers use MariaDB server, while others use MySQL, which makes things complicated, so before
installing PostfixAdmin, we install the dbconfig-no-thanks package to prevent the postfixadmin package from launching the database
configure wizard.

sudo apt install dbconfig-no-thanks

Then install PostfixAdmin from the default Ubuntu software repository.

sudo apt install postfixadmin

Note: If you have previously installed mysql-server on Ubuntu, the installation of PostfixAdmin will probably remove the mysql-server
package from your system. You can re-install it by running the following command.

sudo apt install mysql-server

Now we need to remove the dbconfig-no-thanks package.

sudo apt remove dbconfig-no-thanks

Then launch the database configure wizard for PostfixAdmin.

sudo dpkg-reconfigure postfixadmin

During the installation, you will be asked if you want to reinstall database for PostfixAdmin. This simply means creating a database named
postfixadmin, it won’t remove your existing databases. Press the Tab key to choose Yes.

Then select the default database type: mysql, if you use MySQL or MariaDB.

Next, choose the default connection method: Unix socket.

Then choose the default authentication plugin for MySQL/MariaDB.

Press Enter to choose the default database name for PostfixAdmin.

Press Enter to choose the default database username for PostfixAdmin.

After that, you need to set a password for this user. Note that the password should not contain the # character, or you might not be able to log in
later.

Finally, choose the default database administrative user.

After PostfixAdmin is installed, you can log in to MySQL/MariaDB console with the following command. You will need to enter the password for
the postfixadmin user.

mysql -u postfixadmin -p

And you can check what databases the user has permissions to access with the following command.

SHOW DATABASES;

Output:

+--------------------+

| Database |

+--------------------+

| information_schema |

| postfixadmin |

+--------------------+

2 rows in set (0.002 sec)

By default, the postfixadmin database contains no tables. You can log out of the MySQL/MariaDB console with the following command.

EXIT;

The installation will also create two configuration files: /etc/dbconfig-common/postfixadmin.conf and
/etc/postfixadmin/dbconfig.inc.php, both of which contain the database access settings, including the database username and
password. We need to change the database type from mysql to mysqli in both of the two files.

sudo nano /etc/dbconfig-common/postfixadmin.conf

Change

dbc_dbtype='mysql'

to

dbc_dbtype='mysqli'

Then edit the second file.

sudo nano /etc/postfixadmin/dbconfig.inc.php

Change

$dbtype='mysql';

to

$dbtype='mysqli';

The web files are installed under /usr/share/postfixadmin/ directory, which is owned by root. PostfixAdmin requires a templates_c
directory, so create it.

sudo mkdir /usr/share/postfixadmin/templates_c

We need to give www-data user read, write and execute permissions on this directory with the following command.

sudo setfacl -R -m u:www-data:rwx /usr/share/postfixadmin/templates_c/

If your system can’t find the setfacl command, you need to install the acl package.

sudo apt install acl

Step 3: Create Apache Virtual Host or Nginx Config File for PostfixAdmin

Apache

If you use Apache web server, create a virtual host for PostfixAdmin.

sudo nano /etc/apache2/sites-available/postfixadmin.conf

Put the following text into the file. Replace postfixadmin.example.com with your real domain name and don’t forget to set DNS A record for it.

<VirtualHost *:80>

 ServerName postfixadmin.example.com

 DocumentRoot /usr/share/postfixadmin/public

 ErrorLog ${APACHE_LOG_DIR}/postfixadmin_error.log

 CustomLog ${APACHE_LOG_DIR}/postfixadmin_access.log combined

 <Directory />

 Options FollowSymLinks

 AllowOverride All

 </Directory>

 <Directory /usr/share/postfixadmin/>

 Options FollowSymLinks MultiViews

 AllowOverride All

 Order allow,deny

 allow from all

 </Directory>

</VirtualHost>

Save and close the file. Then enable this virtual host with:

sudo a2ensite postfixadmin.conf

Reload Apache for the changes to take effect.

sudo systemctl reload apache2

Now you should be able to see the PostfixAdmin web-based install wizard at http://postfixadmin.example.com/setup.php.

Nginx

If you use Nginx web server, create a virtual host for PostfixAdmin.

sudo nano /etc/nginx/conf.d/postfixadmin.conf

Put the following text into the file. Replace postfixadmin.example.com with your real domain name and don’t forget to set DNS A record for it.

server {

 listen 80;

 listen [::]:80;

 server_name postfixadmin.example.com;

 root /usr/share/postfixadmin/public/;

 index index.php index.html;

 access_log /var/log/nginx/postfixadmin_access.log;

 error_log /var/log/nginx/postfixadmin_error.log;

 location / {

 try_files $uri $uri/ /index.php;

 }

 location ~ ^/(.+\.php)$ {

 try_files $uri =404;

 fastcgi_pass unix:/run/php/php7.4-fpm.sock;

 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

 include /etc/nginx/fastcgi_params;

 }

}

Save and close the file. Then test Nginx configuration.

sudo nginx -t

If the test is successful, reload Nginx for the changes to take effect.

sudo systemctl reload nginx

Now you should be able to see the PostfixAdmin web-based install wizard at http://postfixadmin.example.com/setup.php.

Step 4: Install Required and Recommended PHP Modules

Run the following command to install PHP modules required or recommended by PostfixAdmin.

sudo apt install php7.4-fpm php7.4-imap php7.4-mbstring php7.4-mysql php7.4-json php7.4-curl php7.4-zip
php7.4-xml php7.4-bz2 php7.4-intl php7.4-gmp

Then restart Apache. (If you use Nginx, you don’t need to restart Nginx.)

sudo systemctl restart apache2

Step 5: Enabling HTTPS

To encrypt the HTTP traffic, we can enable HTTPS by installing a free TLS certificate issued from Let’s Encrypt. Run the following command to
install Let’s Encrypt client (certbot) on Ubuntu 20.04 server.

sudo apt install certbot

If you use Apache, install the Certbot Apache plugin.

sudo apt install python3-certbot-apache

And run this command to obtain and install TLS certificate.

sudo certbot --apache --agree-tos --redirect --hsts --staple-ocsp --email you@example.com -d
postfixadmin.example.com

If you use Nginx, then you also need to install the Certbot Nginx plugin.

sudo apt install python3-certbot-nginx

Next, run the following command to obtain and install TLS certificate.

sudo certbot --nginx --agree-tos --redirect --hsts --staple-ocsp --email you@example.com -d
postfixadmin.example.com

Where

●​ --nginx: Use the nginx plugin.
●​ --apache: Use the Apache plugin.
●​ --agree-tos: Agree to terms of service.
●​ --redirect: Force HTTPS by 301 redirect.
●​ --hsts: Add the Strict-Transport-Security header to every HTTP response. Forcing browser to always use TLS for the domain. Defends

against SSL/TLS Stripping.
●​ --staple-ocsp: Enables OCSP Stapling. A valid OCSP response is stapled to the certificate that the server offers during TLS.

The certificate should now be obtained and automatically installed, which is indicated by the message below.

Step 6: Use Strong Password Scheme in PostfixAdmin and Dovecot

By default, PostfixAdmin and Dovecot use MD5-CRYPT, which is a weak password scheme. You can list available password schemes in
Dovecot with the following command.

sudo doveadm pw -l

Sample output:

SHA1 SSHA512 BLF-CRYPT PLAIN HMAC-MD5 OTP SHA512 SHA RPA DES-CRYPT CRYPT SSHA MD5-CRYPT SKEY PLAIN-MD4
PLAIN-MD5 SCRAM-SHA-1 LANMAN SHA512-CRYPT CLEAR CLEARTEXT ARGON2I ARGON2ID SSHA256 NTLM MD5 PBKDF2 SHA256
CRAM-MD5 PLAIN-TRUNC SHA256-CRYPT SMD5 DIGEST-MD5 LDAP-MD5

Argon2 is a fairly strong password scheme. To use it, we need to edit the PostfixAdmin configuration file, which by default is
/usr/share/postfixadmin/config.inc.php, but we can create a separate file (config.local.php) to store our modifications, so they
won’t be overwritten when a new version of PostfixAdmin is installed in the future.

sudo nano /usr/share/postfixadmin/config.local.php

Add the following lines in the file to use Argon2 password scheme.

<?php

$CONF['encrypt'] = 'dovecot:ARGON2I';

$CONF['dovecotpw'] = "/usr/bin/doveadm pw -r 5";

if(@file_exists('/usr/bin/doveadm')) { // @ to silence openbase_dir stuff; see
https://github.com/postfixadmin/postfixadmin/issues/171

 $CONF['dovecotpw'] = "/usr/bin/doveadm pw -r 5"; # debian

}

Save and close the file. We can also create a symlink in the /etc/postfixadmin/ directory, just in case PostfixAdmin can’t find the file.

sudo ln -s /usr/share/postfixadmin/config.local.php /etc/postfixadmin/config.local.php

https://password-hashing.net/

We will configure password scheme for Dovecot in step 10.

Step 7: Finish the Installation in Web Browser

Go to postfixadmin.example.com/setup.php to run the web-based setup wizard. First, it will check if all dependencies are installed.

If you see the following error,

Invalid query: Specified key was too long; max key length is 1000 bytes

Then you need to log in to MySQL/MariaDB database server as root from command line,

sudo mysql -u root

and change the default collation from utf8mb4_general_ci to utf8_general_ci.

MariaDB [(none)]> alter database postfixadmin collate ='utf8_general_ci';

Exit MySQL/MariaDB console and reload the setup.php page. Once all requirements are satisfied, you can create a setup password for
PostfixAdmin.

After creating the password hash, you need to open the /usr/share/postfixadmin/config.local.php file and add the setup password
hash at the end of the file like below. Of course, you need to use your own password hash.

Next, create the admin account.

If you see the following error when trying to create a superadmin account,

can’t encrypt password with dovecotpw, see error log for details

It’s because the www-data user doesn’t have permission to read Let’s Encrypt TLS certificate. To fix it, run the following command to grant
permissions.

sudo setfacl -R -m u:www-data:rx /etc/letsencrypt/live/ /etc/letsencrypt/archive/

Once the superadmin account is created, you can log into PostfixAdmin at postfixadmin.example.com/login.php.

Step 8: Checking Tables in the Database

The PostfixAdmin setup process populates the postfixadmin database with some default tables. It’s helpful for us to know the names and
structure of the tables. Log in to MySQL/MariaDB console.

sudo mysql -u root

Select the postfixadmin database.

USE postfixadmin;

List all tables in this database.

SHOW TABLES;

Output:

+------------------------+

| Tables_in_postfixadmin |

+------------------------+

| admin |

| alias |

| alias_domain |

| config |

| domain |

| domain_admins |

| fetchmail |

| log |

| mailbox |

| quota |

| quota2 |

| vacation |

| vacation_notification |

+------------------------+

13 rows in set (0.001 sec)

The 3 most important tables are:

●​ domain: contains information on the domains that are using your mail server to send and receive email.
●​ mailbox: contains information on every email address, including hashed password and the location of mail files.
●​ alias: contains the alias of each email address.

If you are interested, you can check what columns each table contains. For example, the following command will show us the columns in the
domain table.

DESCRIBE domain;

Output:

+-------------+--------------+------+-----+---------------------+-------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------------------+-------+

| domain | varchar(255) | NO | PRI | NULL | |

| description | varchar(255) | NO | | NULL | |

| aliases | int(10) | NO | | 0 | |

| mailboxes | int(10) | NO | | 0 | |

| maxquota | bigint(20) | NO | | 0 | |

| quota | bigint(20) | NO | | 0 | |

| transport | varchar(255) | NO | | NULL | |

| backupmx | tinyint(1) | NO | | 0 | |

| created | datetime | NO | | 2000-01-01 00:00:00 | |

| modified | datetime | NO | | 2000-01-01 00:00:00 | |

| active | tinyint(1) | NO | | 1 | |

+-------------+--------------+------+-----+---------------------+-------+

Log out of MySQL/MariaDB console.

EXIT;

Step 9: Configure Postfix to Use MySQL/MariaDB Database

By default, Postfix delivers emails only to users with a local Unix account. To make it deliver emails to virtual users whose information is stored in
the database, we need to configure Postfix to use virtual mailbox domains.

First, we need to add MySQL map support for Postfix by installing the postfix-mysql package.

sudo apt install postfix-mysql

Then edit the Postfix main configuration file.

sudo nano /etc/postfix/main.cf

Add the following lines at the end of this file.

virtual_mailbox_domains = proxy:mysql:/etc/postfix/sql/mysql_virtual_domains_maps.cf

virtual_mailbox_maps =

 proxy:mysql:/etc/postfix/sql/mysql_virtual_mailbox_maps.cf,

 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_mailbox_maps.cf

virtual_alias_maps =

 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_maps.cf,

 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_maps.cf,

 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_catchall_maps.cf

Where:

●​ virtual_mailbox_domains points to a file that will tell Postfix how to look up domain information from the database.
●​ virtual_mailbox_maps points to files that will tell Postfix how to look up email addresses from the database.
●​ virtual_alias_maps points to files that will tell Postfix how to look up aliases from the database.

We want to use dovecot to deliver incoming emails to the virtual users’ message store, so also add the following line at the end of this file.

virtual_transport = lmtp:unix:private/dovecot-lmtp

Save and close the file. Next, we need to create the .cf files one by one. Create the sql directory.

sudo mkdir /etc/postfix/sql/

Create the mysql_virtual_domains_maps.cf file.

sudo nano /etc/postfix/sql/mysql_virtual_domains_maps.cf

Add the following content. Replace password with the postfixadmin password you set in Step 2.

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT domain FROM domain WHERE domain='%s' AND active = '1'

#query = SELECT domain FROM domain WHERE domain='%s'

#optional query to use when relaying for backup MX

#query = SELECT domain FROM domain WHERE domain='%s' AND backupmx = '0' AND active = '1'

#expansion_limit = 100

Create the mysql_virtual_mailbox_maps.cf file.

sudo nano /etc/postfix/sql/mysql_virtual_mailbox_maps.cf

Add the following content.

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT maildir FROM mailbox WHERE username='%s' AND active = '1'

#expansion_limit = 100

Create the mysql_virtual_alias_domain_mailbox_maps.cf file.

sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_mailbox_maps.cf

Add the following content.

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT maildir FROM mailbox,alias_domain WHERE alias_domain.alias_domain = '%d' and
mailbox.username = CONCAT('%u', '@', alias_domain.target_domain) AND mailbox.active = 1 AND
alias_domain.active='1'

Create the mysql_virtual_alias_maps.cf file.

sudo nano /etc/postfix/sql/mysql_virtual_alias_maps.cf

Add the following content.

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT goto FROM alias WHERE address='%s' AND active = '1'

#expansion_limit = 100

Create the mysql_virtual_alias_domain_maps.cf file.

sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_maps.cf

Add the following content.

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT goto FROM alias,alias_domain WHERE alias_domain.alias_domain = '%d' and alias.address =
CONCAT('%u', '@', alias_domain.target_domain) AND alias.active = 1 AND alias_domain.active='1'

Create the mysql_virtual_alias_domain_catchall_maps file.

sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_catchall_maps.cf

Add the following content.

handles catch-all settings of target-domain

user = postfixadmin

password = password

hosts = localhost

dbname = postfixadmin

query = SELECT goto FROM alias,alias_domain WHERE alias_domain.alias_domain = '%d' and alias.address =
CONCAT('@', alias_domain.target_domain) AND alias.active = 1 AND alias_domain.active='1'

Since the database passwords are stored in plain text so they should be readable only by user postfix and root, which is done by executing the
following two commands.

sudo chmod 0640 /etc/postfix/sql/*

sudo setfacl -R -m u:postfix:rx /etc/postfix/sql/

Next, we need to change the value of the mydestination parameter in Postfix. Display the current value:

postconf mydestination

Sample output:

mydestination = $myhostname, linuxbabe.com, localhost.$mydomain, localhost

The mydestination parameter contains a list of domain names that will receive emails delivered to local Unix accounts. In part 1, we added the
apex domain name (like linuxbabe.com) to mydestination. Since we are going to use virtual mailbox, we need to remove the apex domain
name from the list by issuing the following command.

sudo postconf -e "mydestination = \$myhostname, localhost.\$mydomain, localhost"

Now let’s open the Postfix main configuration file again.

sudo nano /etc/postfix/main.cf

Add the following lines at the end of this file.

virtual_mailbox_base = /var/vmail

virtual_minimum_uid = 2000

virtual_uid_maps = static:2000

virtual_gid_maps = static:2000

The first line defines the base location of mail files. The remaining 3 lines define which user ID and group ID Postfix will use when delivering
incoming emails to the mailbox. We use the user ID 2000 and group ID 2000.

Save and close the file. Restart Postfix for the changes to take effect.

sudo systemctl restart postfix

Next, we need to create a user named vmail with ID 2000 and a group with ID 2000.

sudo adduser vmail --system --group --uid 2000 --disabled-login --no-create-home

Create the mail base location.

sudo mkdir /var/vmail/

Make vmail as the owner.

sudo chown vmail:vmail /var/vmail/ -R

Step 10: Configure Dovecot to Use MySQL/MariaDB Database

We also need to configure the Dovecot IMAP server to query user information from the database. First, run the following command to add
MySQL support for Dovecot.

sudo apt install dovecot-mysql

Then edit the 10-mail.conf file.

sudo nano /etc/dovecot/conf.d/10-mail.conf

In part 2, we used the following mail_location. Email messages are stored under the Maildir directory under each user’s home directory.

mail_location = maildir:~/Maildir

Since we are using virtual mailbox domain now, we need to enable mail_home for the virtual users by adding the following line in the file,
because virtual users don’t have home directories by default.

mail_home = /var/vmail/%d/%n/

Save and close the file. Then edit the 10-auth.conf file.

sudo nano /etc/dovecot/conf.d/10-auth.conf

In part 2, we used the following value for auth_username_format.

auth_username_format = %n

The %n would drop the domain if it was given. Because in part 2 we were using local Unix account for the username of every email address, we
must use %n to drop the domain, so users were able to login with the full email address.

Now we are using virtual mailbox domains, which means the username of every email address includes the domain part, so we need to change
the auth_username_format as follows. %u won’t drop away the domain. This allows users to login with the full email address.

auth_username_format = %u

Uncomment the following line at the end of this file, so Dovecot can query user information from MySQL/MariaDB database.

!include auth-sql.conf.ext

Now you probably don’t want local Unix users to send emails without registering email addresses in PostfixAdmin, then comment out the
following line by adding the # character at the beginning, so Dovecot won’t query the local /etc/passwd or /etc/shadow file.

#!include auth-system.conf.ext

It can be helpful to add the following two lines in this file to debug login issues. The login errors would be logged into /var/log/mail.log file.
(Once users can login without problems, you can comment out the following two lines.)

auth_debug = yes

auth_debug_passwords = yes

Save and close the file.

Edit the dovecot-sql.conf.ext file.

sudo nano /etc/dovecot/dovecot-sql.conf.ext

Here is the content that you should have in this file. By default, all lines in this file are commented out, so you can simply copy and paste them at
the bottom. Replace password with the postfixadmin password you set in Step 2.

driver = mysql

connect = host=localhost dbname=postfixadmin user=postfixadmin password=password

default_pass_scheme = ARGON2I

password_query = SELECT username AS user,password FROM mailbox WHERE username = '%u' AND active='1'

user_query = SELECT maildir, 2000 AS uid, 2000 AS gid FROM mailbox WHERE username = '%u' AND active='1'

iterate_query = SELECT username AS user FROM mailbox

Restart Dovecot.

sudo systemctl restart dovecot

When a user tries to log in, Dovecot would use the Argon2 algorithm to generate a password hash from the password entered by the user, then
compare it with the password hash stored in the database.

Step 11: Add Domain and Mailboxes in PostfixAdmin

Log in to PostfixAdmin web interface as the admin. Click the Domain List tab and select New Domain to add a domain. You can choose how
many aliases and mailboxes are allowed for this domain.

Then click Virtual List tab and select Add Mailbox to add a new email address for your domain.

Next, you can open your desktop email client such as Mozilla Thunderbird and add a mail account.

●​ In the incoming server section, select IMAP protocol, enter mail.your-domain.com as the server name, choose port 143 and
STARTTLS. Choose normal password as the authentication method.

●​ In the outgoing section, select SMTP protocol, enter mail.your-domain.com as the server name, choose port 587 and STARTTLS.
Choose normal password as the authentication method.

Hint: You can also use port 993 with SSL/TLS encryption for IMAP, and use port 465 with SSL/TLS encryption for SMTP. You should not use port
25 as the SMTP port in mail clients to submit outgoing emails.

You should now be able to connect to your own email server and also send and receive emails with your desktop email client! Note that you
cannot use local Unix accounts to login now. You must log in with the virtual user created from PostfixAdmin web interface.

Troubleshooting Tips

As a rule of thumb, you should always check the mail log (/var/log/mail.log) on your mail server when an error happens. The following is a
list of specific errors and troubleshooting tips.

Can’t login from Mail Clients

If you can’t log into your mail server from a desktop mail client, scan your mail server to find if the ports are open. Note that you should run the
following command from another Linux computer or server. If you run it on your mail server, then the ports will always appear to be open.

sudo nmap mail.your-domain.com

And check if Dovecot is running.

systemctl status dovecot

You can also check the mail log (/var/log/mail.log), which may give you some clues. If Dovecot fails to start, the error might not be logged
to the /var/log/mail.log file, you can run the following command to see what’s wrong.

sudo journalctl -eu dovecot

If you see the following error in the mail log, it’s likely that you didn’t set a correct password in the .cf files under /etc/postfix/sql/ directory.

postfix/trivial-rewrite[28494]: warning: virtual_alias_domains:
proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_maps.cf: table lookup problem

postfix/trivial-rewrite[28494]: warning: virtual_alias_domains lookup failure

If you see the following error in the mail log, it’s because you forgot to add mail_location = maildir:~/Maildir in the
/etc/dovecot/conf.d/10-mail.conf file.

open(/var/mail/username@domain.com) failed: Permission denied (euid=2000(vmail) egid=2000(vmail) missing
+w perm: /var/mail, we're not in group 8(mail), dir owned by 0:8 mode=0775

Cloudflare DNS

As I said in part 1, if you use Cloudflare DNS service, you should not enable the CDN (proxy) feature when creating DNS A record and AAAA
record for the hostname of your mail server. Cloudflare doesn’t support SMTP or IMAP proxy.

Relay Access Denied

If you see the “relay access denied” error when trying to send emails from a mail client, it’s most likely that you use port 25 as the SMTP port in
your mail client. As I said a while ago, you should use port 587 or 465 as the SMTP port in mail clients (Mozilla Thunberbird, Microsoft Outlook,
etc) to submit outgoing emails. Port 25 should be used for SMTP server to SMTP server communications.

iOS Mail App

If you use the iOS Mail app to log into your mail server and encounter the following error.

You can try to fix it by enforcing SSL encryption, for both SMTP and IMAP.

Fun fact: It seems the iOS Mail app has difficulty in supporting STARTTLS on IMAP port 143, but it supports STARTTLS on the submission port
587.

Automatically Clean the Junk Folder and Trash Folder

To delete emails in Junk folder for all users, you can run

sudo doveadm expunge -A mailbox Junk all

To delete emails in Trash folder, run

sudo doveadm expunge -A mailbox Trash all

I think it’s better to clean emails that have been in the Junk or Trash folder for more than 2 weeks, instead of cleaning all emails.

sudo doveadm expunge -A mailbox Junk savedbefore 2w

Then add a cron job to automate the job.

sudo crontab -e

Add the following line to clean Junk and Trash folder every day.

@daily doveadm expunge -A mailbox Junk savedbefore 2w;doveadm expunge -A mailbox Trash savedbefore 2w

To receive report when a Cron job produces an error, you can add the following line above all Cron jobs.

MAILTO="you@your-domain.com"

Save and close the file. And you’re done.

Change User Password in PostfixAdmin

Users can log into PostfixAdmin at https://postfixadmin.example.com/users/login.php, then change their passwords.

Restricting Access to Sendmail

By default, any local user can use the sendmail binary to submit outgoing emails. Now that your mail server is using virtual mailboxes, you
might want to restrict access to the sendmail binary to trusted local users only, so a malicious user can’t use it to send a large volume of emails
to damage your mail server’s reputation. Edit the Postfix main configuration file.

sudo nano /etc/postfix/main.cf

Add the following line to the end of this file, so only the root and www-data user can submit emails via sendmail. You can also add other
usernames.

authorized_submit_users = root,www-data

Save and close the file. Then restart Postfix.

sudo systemctl restart postfix

	PostfixAdmin-on Ubuntu 20.04 Mail Server
	PostfixAdmin Features

	●​manage mailboxes, virtual domains, and aliases
	●​vacation/out-of-office messages (Personally I think it’s better done in Roundcube webmail)
	●​alias domains (forwarding one domain to another with recipient validation)
	●​users can manage their own mailbox (change alias, password and vacation message)
	●​quota support for single mailboxes and total quota of a domain
	●​fetchmail integration: You can fetch emails from your original email address to your new email address.
	●​command-line client postfixadmin-cli for those who don’t want to click around in a web interface 😉
	Note: Once you finish part 3, you can no longer use local Unix accounts as email addresses. You must create email addresses from the PostfixAdmin web interface.
	Prerequisites

	It’s required that you have followed part 1 and part 2 of this tutorial series before continuing to read this article. If you followed mail server tutorials on other websites, I recommend purging your configurations (sudo apt purge postfix dovecot-core) and start over with my tutorial series, so you are not going to be confused by different setup processes.
	Once the above requirements are met, let’s install and configure PostfixAdmin.
	Step 1: Install MariaDB Database Server

	PostfixAdmin is written in PHP and requires a database (MySQL/MariaDB, PostgreSQL or SQLite). This article will use MariaDB database, which is a drop-in replacement for MySQL. It is developed by former members of MySQL team who are concerned that Oracle might turn MySQL into a closed-source product. Enter the following command to install MariaDB on Ubuntu 20.04.
	sudo apt install mariadb-server mariadb-client
	After it’s installed, MariaDB server should be automatically started. Use systemctl to check its status.
	systemctl status mariadb
	Output:
	● mariadb.service - MariaDB 10.3.22 database server
	 Loaded: loaded (/lib/systemd/system/mariadb.service; enabled; vendor preset: enabled)
	 Active: active (running) since Fri 2020-04-10 14:19:16 UTC; 18s ago
	 Docs: man:mysqld(8)
	 https://mariadb.com/kb/en/library/systemd/
	 Main PID: 9161 (mysqld)
	 Status: "Taking your SQL requests now..."
	 Tasks: 31 (limit: 9451)
	 Memory: 64.7M
	 CGroup: /system.slice/mariadb.service
	 └─9161 /usr/sbin/mysqld
	
	If it’s not running, start it with this command:
	sudo systemctl start mariadb
	To enable MariaDB to automatically start at boot time, run
	sudo systemctl enable mariadb
	Now run the post-installation security script.
	sudo mysql_secure_installation
	When it asks you to enter MariaDB root password, press Enter key as the root password isn’t set yet. Then enter y to set the root password for MariaDB server.
	ubuntu-20.04-install-LAMP-stack-MariaDB
	Next, you can press Enter to answer all remaining questions, which will remove anonymous user, disable remote root login and remove test database. This step is a basic requirement for MariaDB database security. (Notice that Y is capitalized, which means it is the default answer.)
	Install-LAMP-stack-on-Ubuntu-20.04-MariaDB-Database-server
	Step 2: Install PostfixAdmin on Ubuntu 20.04 Server

	Log into your mail server. Because some readers use MariaDB server, while others use MySQL, which makes things complicated, so before installing PostfixAdmin, we install the dbconfig-no-thanks package to prevent the postfixadmin package from launching the database configure wizard.
	sudo apt install dbconfig-no-thanks
	Then install PostfixAdmin from the default Ubuntu software repository.
	sudo apt install postfixadmin
	Note: If you have previously installed mysql-server on Ubuntu, the installation of PostfixAdmin will probably remove the mysql-server package from your system. You can re-install it by running the following command.
	sudo apt install mysql-server
	Now we need to remove the dbconfig-no-thanks package.
	sudo apt remove dbconfig-no-thanks
	Then launch the database configure wizard for PostfixAdmin.
	sudo dpkg-reconfigure postfixadmin
	During the installation, you will be asked if you want to reinstall database for PostfixAdmin. This simply means creating a database named postfixadmin, it won’t remove your existing databases. Press the Tab key to choose Yes.
	reinstall databae for postfixadmin
	Then select the default database type: mysql, if you use MySQL or MariaDB.
	postfixadmin mariadb mysql
	Next, choose the default connection method: Unix socket.
	postfixadmin connection method for mysql
	Then choose the default authentication plugin for MySQL/MariaDB.
	postfixadmin authentication plugin for MySQL MariaDB
	Press Enter to choose the default database name for PostfixAdmin.
	postfixadmin ubuntu 20.04 LTS
	Press Enter to choose the default database username for PostfixAdmin.
	database username for PostfixAdmin
	After that, you need to set a password for this user. Note that the password should not contain the # character, or you might not be able to log in later.
	postfixadmin database password
	Finally, choose the default database administrative user.
	postfixadmin database administrative user
	After PostfixAdmin is installed, you can log in to MySQL/MariaDB console with the following command. You will need to enter the password for the postfixadmin user.
	mysql -u postfixadmin -p
	And you can check what databases the user has permissions to access with the following command.
	SHOW DATABASES;
	Output:
	+--------------------+
	| Database |
	+--------------------+
	| information_schema |
	| postfixadmin |
	+--------------------+
	2 rows in set (0.002 sec)
	By default, the postfixadmin database contains no tables. You can log out of the MySQL/MariaDB console with the following command.
	EXIT;
	The installation will also create two configuration files: /etc/dbconfig-common/postfixadmin.conf and /etc/postfixadmin/dbconfig.inc.php, both of which contain the database access settings, including the database username and password. We need to change the database type from mysql to mysqli in both of the two files.
	sudo nano /etc/dbconfig-common/postfixadmin.conf
	Change
	dbc_dbtype='mysql'
	to
	dbc_dbtype='mysqli'
	Then edit the second file.
	sudo nano /etc/postfixadmin/dbconfig.inc.php
	Change
	$dbtype='mysql';
	to
	$dbtype='mysqli';
	The web files are installed under /usr/share/postfixadmin/ directory, which is owned by root. PostfixAdmin requires a templates_c directory, so create it.
	sudo mkdir /usr/share/postfixadmin/templates_c
	We need to give www-data user read, write and execute permissions on this directory with the following command.
	sudo setfacl -R -m u:www-data:rwx /usr/share/postfixadmin/templates_c/
	If your system can’t find the setfacl command, you need to install the acl package.
	sudo apt install acl
	Step 3: Create Apache Virtual Host or Nginx Config File for PostfixAdmin
	Apache

	If you use Apache web server, create a virtual host for PostfixAdmin.
	sudo nano /etc/apache2/sites-available/postfixadmin.conf
	Put the following text into the file. Replace postfixadmin.example.com with your real domain name and don’t forget to set DNS A record for it.
	<VirtualHost *:80>
	 ServerName postfixadmin.example.com
	 DocumentRoot /usr/share/postfixadmin/public
	
	 ErrorLog ${APACHE_LOG_DIR}/postfixadmin_error.log
	 CustomLog ${APACHE_LOG_DIR}/postfixadmin_access.log combined
	
	 <Directory />
	 Options FollowSymLinks
	 AllowOverride All
	 </Directory>
	
	 <Directory /usr/share/postfixadmin/>
	 Options FollowSymLinks MultiViews
	 AllowOverride All
	 Order allow,deny
	 allow from all
	 </Directory>
	
	</VirtualHost>
	Save and close the file. Then enable this virtual host with:
	sudo a2ensite postfixadmin.conf
	Reload Apache for the changes to take effect.
	sudo systemctl reload apache2
	Now you should be able to see the PostfixAdmin web-based install wizard at http://postfixadmin.example.com/setup.php.
	Nginx

	If you use Nginx web server, create a virtual host for PostfixAdmin.
	sudo nano /etc/nginx/conf.d/postfixadmin.conf
	Put the following text into the file. Replace postfixadmin.example.com with your real domain name and don’t forget to set DNS A record for it.
	server {
	 listen 80;
	 listen [::]:80;
	 server_name postfixadmin.example.com;
	
	 root /usr/share/postfixadmin/public/;
	 index index.php index.html;
	
	 access_log /var/log/nginx/postfixadmin_access.log;
	 error_log /var/log/nginx/postfixadmin_error.log;
	
	 location / {
	 try_files $uri $uri/ /index.php;
	 }
	
	 location ~ ^/(.+\.php)$ {
	 try_files $uri =404;
	 fastcgi_pass unix:/run/php/php7.4-fpm.sock;
	 fastcgi_index index.php;
	 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
	 include /etc/nginx/fastcgi_params;
	 }
	}
	
	Save and close the file. Then test Nginx configuration.
	sudo nginx -t
	If the test is successful, reload Nginx for the changes to take effect.
	sudo systemctl reload nginx
	Now you should be able to see the PostfixAdmin web-based install wizard at http://postfixadmin.example.com/setup.php.
	Step 4: Install Required and Recommended PHP Modules

	Run the following command to install PHP modules required or recommended by PostfixAdmin.
	sudo apt install php7.4-fpm php7.4-imap php7.4-mbstring php7.4-mysql php7.4-json php7.4-curl php7.4-zip php7.4-xml php7.4-bz2 php7.4-intl php7.4-gmp
	Then restart Apache. (If you use Nginx, you don’t need to restart Nginx.)
	sudo systemctl restart apache2
	Step 5: Enabling HTTPS

	To encrypt the HTTP traffic, we can enable HTTPS by installing a free TLS certificate issued from Let’s Encrypt. Run the following command to install Let’s Encrypt client (certbot) on Ubuntu 20.04 server.
	sudo apt install certbot
	If you use Apache, install the Certbot Apache plugin.
	sudo apt install python3-certbot-apache
	And run this command to obtain and install TLS certificate.
	sudo certbot --apache --agree-tos --redirect --hsts --staple-ocsp --email you@example.com -d postfixadmin.example.com
	If you use Nginx, then you also need to install the Certbot Nginx plugin.
	sudo apt install python3-certbot-nginx
	Next, run the following command to obtain and install TLS certificate.
	sudo certbot --nginx --agree-tos --redirect --hsts --staple-ocsp --email you@example.com -d postfixadmin.example.com
	Where
	●​--nginx: Use the nginx plugin.
	●​--apache: Use the Apache plugin.
	●​--agree-tos: Agree to terms of service.
	●​--redirect: Force HTTPS by 301 redirect.
	●​--hsts: Add the Strict-Transport-Security header to every HTTP response. Forcing browser to always use TLS for the domain. Defends against SSL/TLS Stripping.
	●​--staple-ocsp: Enables OCSP Stapling. A valid OCSP response is stapled to the certificate that the server offers during TLS.
	The certificate should now be obtained and automatically installed, which is indicated by the message below.
	postfixadmin ubuntu https
	Step 6: Use Strong Password Scheme in PostfixAdmin and Dovecot

	By default, PostfixAdmin and Dovecot use MD5-CRYPT, which is a weak password scheme. You can list available password schemes in Dovecot with the following command.
	sudo doveadm pw -l
	Sample output:
	SHA1 SSHA512 BLF-CRYPT PLAIN HMAC-MD5 OTP SHA512 SHA RPA DES-CRYPT CRYPT SSHA MD5-CRYPT SKEY PLAIN-MD4 PLAIN-MD5 SCRAM-SHA-1 LANMAN SHA512-CRYPT CLEAR CLEARTEXT ARGON2I ARGON2ID SSHA256 NTLM MD5 PBKDF2 SHA256 CRAM-MD5 PLAIN-TRUNC SHA256-CRYPT SMD5 DIGEST-MD5 LDAP-MD5
	Argon2 is a fairly strong password scheme. To use it, we need to edit the PostfixAdmin configuration file, which by default is /usr/share/postfixadmin/config.inc.php, but we can create a separate file (config.local.php) to store our modifications, so they won’t be overwritten when a new version of PostfixAdmin is installed in the future.
	sudo nano /usr/share/postfixadmin/config.local.php
	Add the following lines in the file to use Argon2 password scheme.
	<?php
	$CONF['encrypt'] = 'dovecot:ARGON2I';
	
	$CONF['dovecotpw'] = "/usr/bin/doveadm pw -r 5";
	if(@file_exists('/usr/bin/doveadm')) { // @ to silence openbase_dir stuff; see https://github.com/postfixadmin/postfixadmin/issues/171
	 $CONF['dovecotpw'] = "/usr/bin/doveadm pw -r 5"; # debian
	}
	
	Save and close the file. We can also create a symlink in the /etc/postfixadmin/ directory, just in case PostfixAdmin can’t find the file.
	sudo ln -s /usr/share/postfixadmin/config.local.php /etc/postfixadmin/config.local.php
	We will configure password scheme for Dovecot in step 10.
	Step 7: Finish the Installation in Web Browser

	Go to postfixadmin.example.com/setup.php to run the web-based setup wizard. First, it will check if all dependencies are installed.
	ubuntu-20.04-postfixadmin-setup-wizard-checker
	If you see the following error,
	Invalid query: Specified key was too long; max key length is 1000 bytes
	Then you need to log in to MySQL/MariaDB database server as root from command line,
	sudo mysql -u root
	and change the default collation from utf8mb4_general_ci to utf8_general_ci.
	MariaDB [(none)]> alter database postfixadmin collate ='utf8_general_ci';
	Exit MySQL/MariaDB console and reload the setup.php page. Once all requirements are satisfied, you can create a setup password for PostfixAdmin.
	postfixadmin virtual domain
	After creating the password hash, you need to open the /usr/share/postfixadmin/config.local.php file and add the setup password hash at the end of the file like below. Of course, you need to use your own password hash.
	postfixadmin setup password
	Next, create the admin account.
	postfixadmin ubuntu install
	If you see the following error when trying to create a superadmin account,
	can’t encrypt password with dovecotpw, see error log for details
	It’s because the www-data user doesn’t have permission to read Let’s Encrypt TLS certificate. To fix it, run the following command to grant permissions.
	sudo setfacl -R -m u:www-data:rx /etc/letsencrypt/live/ /etc/letsencrypt/archive/
	
	Once the superadmin account is created, you can log into PostfixAdmin at postfixadmin.example.com/login.php.
	postfixadmin virtual mailbox domains ubuntu 20.04
	Step 8: Checking Tables in the Database

	The PostfixAdmin setup process populates the postfixadmin database with some default tables. It’s helpful for us to know the names and structure of the tables. Log in to MySQL/MariaDB console.
	sudo mysql -u root
	Select the postfixadmin database.
	USE postfixadmin;
	List all tables in this database.
	SHOW TABLES;
	Output:
	+------------------------+
	| Tables_in_postfixadmin |
	+------------------------+
	| admin |
	| alias |
	| alias_domain |
	| config |
	| domain |
	| domain_admins |
	| fetchmail |
	| log |
	| mailbox |
	| quota |
	| quota2 |
	| vacation |
	| vacation_notification |
	+------------------------+
	13 rows in set (0.001 sec)
	
	The 3 most important tables are:
	●​domain: contains information on the domains that are using your mail server to send and receive email.
	●​mailbox: contains information on every email address, including hashed password and the location of mail files.
	●​alias: contains the alias of each email address.
	If you are interested, you can check what columns each table contains. For example, the following command will show us the columns in the domain table.
	DESCRIBE domain;
	Output:
	+-------------+--------------+------+-----+---------------------+-------+
	| Field | Type | Null | Key | Default | Extra |
	+-------------+--------------+------+-----+---------------------+-------+
	| domain | varchar(255) | NO | PRI | NULL | |
	| description | varchar(255) | NO | | NULL | |
	| aliases | int(10) | NO | | 0 | |
	| mailboxes | int(10) | NO | | 0 | |
	| maxquota | bigint(20) | NO | | 0 | |
	| quota | bigint(20) | NO | | 0 | |
	| transport | varchar(255) | NO | | NULL | |
	| backupmx | tinyint(1) | NO | | 0 | |
	| created | datetime | NO | | 2000-01-01 00:00:00 | |
	| modified | datetime | NO | | 2000-01-01 00:00:00 | |
	| active | tinyint(1) | NO | | 1 | |
	+-------------+--------------+------+-----+---------------------+-------+
	
	Log out of MySQL/MariaDB console.
	EXIT;
	Step 9: Configure Postfix to Use MySQL/MariaDB Database

	By default, Postfix delivers emails only to users with a local Unix account. To make it deliver emails to virtual users whose information is stored in the database, we need to configure Postfix to use virtual mailbox domains.
	First, we need to add MySQL map support for Postfix by installing the postfix-mysql package.
	sudo apt install postfix-mysql
	Then edit the Postfix main configuration file.
	sudo nano /etc/postfix/main.cf
	Add the following lines at the end of this file.
	virtual_mailbox_domains = proxy:mysql:/etc/postfix/sql/mysql_virtual_domains_maps.cf
	virtual_mailbox_maps =
	 proxy:mysql:/etc/postfix/sql/mysql_virtual_mailbox_maps.cf,
	 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_mailbox_maps.cf
	virtual_alias_maps =
	 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_maps.cf,
	 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_maps.cf,
	 proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_domain_catchall_maps.cf
	
	Where:
	●​virtual_mailbox_domains points to a file that will tell Postfix how to look up domain information from the database.
	●​virtual_mailbox_maps points to files that will tell Postfix how to look up email addresses from the database.
	●​virtual_alias_maps points to files that will tell Postfix how to look up aliases from the database.
	We want to use dovecot to deliver incoming emails to the virtual users’ message store, so also add the following line at the end of this file.
	virtual_transport = lmtp:unix:private/dovecot-lmtp
	Configure-Postfix-to-Use-MySQL-MariaDB-Database-ubuntu
	Save and close the file. Next, we need to create the .cf files one by one. Create the sql directory.
	sudo mkdir /etc/postfix/sql/
	Create the mysql_virtual_domains_maps.cf file.
	sudo nano /etc/postfix/sql/mysql_virtual_domains_maps.cf
	Add the following content. Replace password with the postfixadmin password you set in Step 2.
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT domain FROM domain WHERE domain='%s' AND active = '1'
	#query = SELECT domain FROM domain WHERE domain='%s'
	#optional query to use when relaying for backup MX
	#query = SELECT domain FROM domain WHERE domain='%s' AND backupmx = '0' AND active = '1'
	#expansion_limit = 100
	Create the mysql_virtual_mailbox_maps.cf file.
	sudo nano /etc/postfix/sql/mysql_virtual_mailbox_maps.cf
	Add the following content.
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT maildir FROM mailbox WHERE username='%s' AND active = '1'
	#expansion_limit = 100
	Create the mysql_virtual_alias_domain_mailbox_maps.cf file.
	sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_mailbox_maps.cf
	Add the following content.
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT maildir FROM mailbox,alias_domain WHERE alias_domain.alias_domain = '%d' and mailbox.username = CONCAT('%u', '@', alias_domain.target_domain) AND mailbox.active = 1 AND alias_domain.active='1'
	Create the mysql_virtual_alias_maps.cf file.
	sudo nano /etc/postfix/sql/mysql_virtual_alias_maps.cf
	Add the following content.
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT goto FROM alias WHERE address='%s' AND active = '1'
	#expansion_limit = 100
	Create the mysql_virtual_alias_domain_maps.cf file.
	sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_maps.cf
	Add the following content.
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT goto FROM alias,alias_domain WHERE alias_domain.alias_domain = '%d' and alias.address = CONCAT('%u', '@', alias_domain.target_domain) AND alias.active = 1 AND alias_domain.active='1'
	Create the mysql_virtual_alias_domain_catchall_maps file.
	sudo nano /etc/postfix/sql/mysql_virtual_alias_domain_catchall_maps.cf
	Add the following content.
	# handles catch-all settings of target-domain
	user = postfixadmin
	password = password
	hosts = localhost
	dbname = postfixadmin
	query = SELECT goto FROM alias,alias_domain WHERE alias_domain.alias_domain = '%d' and alias.address = CONCAT('@', alias_domain.target_domain) AND alias.active = 1 AND alias_domain.active='1'
	Since the database passwords are stored in plain text so they should be readable only by user postfix and root, which is done by executing the following two commands.
	sudo chmod 0640 /etc/postfix/sql/*
	sudo setfacl -R -m u:postfix:rx /etc/postfix/sql/
	Next, we need to change the value of the mydestination parameter in Postfix. Display the current value:
	postconf mydestination
	Sample output:
	mydestination = $myhostname, linuxbabe.com, localhost.$mydomain, localhost
	The mydestination parameter contains a list of domain names that will receive emails delivered to local Unix accounts. In part 1, we added the apex domain name (like linuxbabe.com) to mydestination. Since we are going to use virtual mailbox, we need to remove the apex domain name from the list by issuing the following command.
	sudo postconf -e "mydestination = \$myhostname, localhost.\$mydomain, localhost"
	Now let’s open the Postfix main configuration file again.
	sudo nano /etc/postfix/main.cf
	Add the following lines at the end of this file.
	virtual_mailbox_base = /var/vmail
	virtual_minimum_uid = 2000
	virtual_uid_maps = static:2000
	virtual_gid_maps = static:2000
	The first line defines the base location of mail files. The remaining 3 lines define which user ID and group ID Postfix will use when delivering incoming emails to the mailbox. We use the user ID 2000 and group ID 2000.
	Save and close the file. Restart Postfix for the changes to take effect.
	sudo systemctl restart postfix
	Next, we need to create a user named vmail with ID 2000 and a group with ID 2000.
	sudo adduser vmail --system --group --uid 2000 --disabled-login --no-create-home
	Create the mail base location.
	sudo mkdir /var/vmail/
	Make vmail as the owner.
	sudo chown vmail:vmail /var/vmail/ -R
	Step 10: Configure Dovecot to Use MySQL/MariaDB Database

	We also need to configure the Dovecot IMAP server to query user information from the database. First, run the following command to add MySQL support for Dovecot.
	sudo apt install dovecot-mysql
	Then edit the 10-mail.conf file.
	sudo nano /etc/dovecot/conf.d/10-mail.conf
	In part 2, we used the following mail_location. Email messages are stored under the Maildir directory under each user’s home directory.
	mail_location = maildir:~/Maildir
	Since we are using virtual mailbox domain now, we need to enable mail_home for the virtual users by adding the following line in the file, because virtual users don’t have home directories by default.
	mail_home = /var/vmail/%d/%n/
	virtual mailbox home directory
	Save and close the file. Then edit the 10-auth.conf file.
	sudo nano /etc/dovecot/conf.d/10-auth.conf
	In part 2, we used the following value for auth_username_format.
	auth_username_format = %n
	The %n would drop the domain if it was given. Because in part 2 we were using local Unix account for the username of every email address, we must use %n to drop the domain, so users were able to login with the full email address.
	Now we are using virtual mailbox domains, which means the username of every email address includes the domain part, so we need to change the auth_username_format as follows. %u won’t drop away the domain. This allows users to login with the full email address.
	auth_username_format = %u
	Uncomment the following line at the end of this file, so Dovecot can query user information from MySQL/MariaDB database.
	!include auth-sql.conf.ext
	Now you probably don’t want local Unix users to send emails without registering email addresses in PostfixAdmin, then comment out the following line by adding the # character at the beginning, so Dovecot won’t query the local /etc/passwd or /etc/shadow file.
	#!include auth-system.conf.ext
	It can be helpful to add the following two lines in this file to debug login issues. The login errors would be logged into /var/log/mail.log file. (Once users can login without problems, you can comment out the following two lines.)
	auth_debug = yes
	auth_debug_passwords = yes
	dovecot mysql Password database
	Save and close the file.
	Edit the dovecot-sql.conf.ext file.
	sudo nano /etc/dovecot/dovecot-sql.conf.ext
	Here is the content that you should have in this file. By default, all lines in this file are commented out, so you can simply copy and paste them at the bottom. Replace password with the postfixadmin password you set in Step 2.
	driver = mysql
	
	connect = host=localhost dbname=postfixadmin user=postfixadmin password=password
	
	default_pass_scheme = ARGON2I
	
	password_query = SELECT username AS user,password FROM mailbox WHERE username = '%u' AND active='1'
	
	user_query = SELECT maildir, 2000 AS uid, 2000 AS gid FROM mailbox WHERE username = '%u' AND active='1'
	
	iterate_query = SELECT username AS user FROM mailbox
	
	Restart Dovecot.
	sudo systemctl restart dovecot
	When a user tries to log in, Dovecot would use the Argon2 algorithm to generate a password hash from the password entered by the user, then compare it with the password hash stored in the database.
	Step 11: Add Domain and Mailboxes in PostfixAdmin

	Log in to PostfixAdmin web interface as the admin. Click the Domain List tab and select New Domain to add a domain. You can choose how many aliases and mailboxes are allowed for this domain.
	postfixadmin add domain
	Then click Virtual List tab and select Add Mailbox to add a new email address for your domain.
	postfixadmin add mailbox
	Next, you can open your desktop email client such as Mozilla Thunderbird and add a mail account.
	●​In the incoming server section, select IMAP protocol, enter mail.your-domain.com as the server name, choose port 143 and STARTTLS. Choose normal password as the authentication method.
	●​In the outgoing section, select SMTP protocol, enter mail.your-domain.com as the server name, choose port 587 and STARTTLS. Choose normal password as the authentication method.
	ubuntu postfix dovecot letsencrypt https
	Hint: You can also use port 993 with SSL/TLS encryption for IMAP, and use port 465 with SSL/TLS encryption for SMTP. You should not use port 25 as the SMTP port in mail clients to submit outgoing emails.
	You should now be able to connect to your own email server and also send and receive emails with your desktop email client! Note that you cannot use local Unix accounts to login now. You must log in with the virtual user created from PostfixAdmin web interface.
	Troubleshooting Tips

	As a rule of thumb, you should always check the mail log (/var/log/mail.log) on your mail server when an error happens. The following is a list of specific errors and troubleshooting tips.
	Can’t login from Mail Clients

	If you can’t log into your mail server from a desktop mail client, scan your mail server to find if the ports are open. Note that you should run the following command from another Linux computer or server. If you run it on your mail server, then the ports will always appear to be open.
	sudo nmap mail.your-domain.com
	And check if Dovecot is running.
	systemctl status dovecot
	You can also check the mail log (/var/log/mail.log), which may give you some clues. If Dovecot fails to start, the error might not be logged to the /var/log/mail.log file, you can run the following command to see what’s wrong.
	sudo journalctl -eu dovecot
	If you see the following error in the mail log, it’s likely that you didn’t set a correct password in the .cf files under /etc/postfix/sql/ directory.
	postfix/trivial-rewrite[28494]: warning: virtual_alias_domains: proxy:mysql:/etc/postfix/sql/mysql_virtual_alias_maps.cf: table lookup problem
	postfix/trivial-rewrite[28494]: warning: virtual_alias_domains lookup failure
	If you see the following error in the mail log, it’s because you forgot to add mail_location = maildir:~/Maildir in the /etc/dovecot/conf.d/10-mail.conf file.
	open(/var/mail/username@domain.com) failed: Permission denied (euid=2000(vmail) egid=2000(vmail) missing +w perm: /var/mail, we're not in group 8(mail), dir owned by 0:8 mode=0775
	Cloudflare DNS

	As I said in part 1, if you use Cloudflare DNS service, you should not enable the CDN (proxy) feature when creating DNS A record and AAAA record for the hostname of your mail server. Cloudflare doesn’t support SMTP or IMAP proxy.
	Relay Access Denied

	If you see the “relay access denied” error when trying to send emails from a mail client, it’s most likely that you use port 25 as the SMTP port in your mail client. As I said a while ago, you should use port 587 or 465 as the SMTP port in mail clients (Mozilla Thunberbird, Microsoft Outlook, etc) to submit outgoing emails. Port 25 should be used for SMTP server to SMTP server communications.
	postfix dovecot relay access denied
	iOS Mail App

	If you use the iOS Mail app to log into your mail server and encounter the following error.
	ios the mail server is not responding
	You can try to fix it by enforcing SSL encryption, for both SMTP and IMAP.
	ios mail enforce SSL encryption
	Fun fact: It seems the iOS Mail app has difficulty in supporting STARTTLS on IMAP port 143, but it supports STARTTLS on the submission port 587.
	Automatically Clean the Junk Folder and Trash Folder

	To delete emails in Junk folder for all users, you can run
	sudo doveadm expunge -A mailbox Junk all
	To delete emails in Trash folder, run
	sudo doveadm expunge -A mailbox Trash all
	I think it’s better to clean emails that have been in the Junk or Trash folder for more than 2 weeks, instead of cleaning all emails.
	sudo doveadm expunge -A mailbox Junk savedbefore 2w
	Then add a cron job to automate the job.
	sudo crontab -e
	Add the following line to clean Junk and Trash folder every day.
	@daily doveadm expunge -A mailbox Junk savedbefore 2w;doveadm expunge -A mailbox Trash savedbefore 2w
	To receive report when a Cron job produces an error, you can add the following line above all Cron jobs.
	MAILTO="you@your-domain.com"
	Save and close the file. And you’re done.
	Change User Password in PostfixAdmin

	Users can log into PostfixAdmin at https://postfixadmin.example.com/users/login.php, then change their passwords.
	Restricting Access to Sendmail

	By default, any local user can use the sendmail binary to submit outgoing emails. Now that your mail server is using virtual mailboxes, you might want to restrict access to the sendmail binary to trusted local users only, so a malicious user can’t use it to send a large volume of emails to damage your mail server’s reputation. Edit the Postfix main configuration file.
	sudo nano /etc/postfix/main.cf
	Add the following line to the end of this file, so only the root and www-data user can submit emails via sendmail. You can also add other usernames.
	authorized_submit_users = root,www-data
	Save and close the file. Then restart Postfix.
	sudo systemctl restart postfix
	
	

