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Lessons Learned From Soil Liquefaction 
during the 2018 Palu Earthquake 

(GIST 58 Final Project) 
By: William Lee 

Introduction 

 

Figure 1: Aerial Photograph of devastation caused by soil liquefaction at Petobo District in Palu, 
Indonesia (Photo Credit: The Jakarta Post) 

On September 28th, 2018 at 5:02pm (UTC +7), a magnitude 7.5 earthquake hit Central 
Sulawesi province. It hit approximately 50 miles north of the provincial capital city: Palu, 
Indonesia. What followed was a tsunami that reached at least 7.22 feet (2.1 meters) high and 
inundated 0.31 miles (0.5 kilometers) inland, 770 aftershocks triggered by landslides in the hilly 
areas, and, most importantly, soil liquefaction upended thousands of each built manmade 
infrastructure (buildings, roads, pipes, electric lines, etc.). The soil liquefaction, alone, was 
responsible for damaging more than 60,000 buildings/houses (90-95% of the total homes 
damaged by the earthquake). As a result of the three occurrences, Palu’s overall economy was 
disrupted. The numerous sectors that were hardest hit were: Construction, Social, Agriculture, 
Manufacturing, Financial Services, Public, Non-Profit, Tourism, etc. 

The overall aim of this case study is to attempt utilize methods that can be used to 
understand the impact of the impacts of liquefaction can have on Palu, and the lessons that 
disaster management personnel and the Indonesia public can learn to become better prepared not 
just for the next inevitable earthquake and liquefaction not just in the local scale, but, at most, 
advocate other countries that may have a similar problem with liquefaction globally. The case 
study will first give a concise background of the city we are studying. Then the paper will go 
through the methods used to conduct the analysis, particularly unsupervised classification. The 
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Results section will then primarily be about the analysis and statistics because of utilizing what 
has been described in the Methods section. Finally, the Conclusion section will go into 
improvements and problems of this case study will be discussed.  

Background 

 

Figure 2: Image of Soil Liquefaction Example (Credit: Southwest Research Institute (SWRI)) 

​ A powerful earthquake can cause water-logged sediment minerals in the soil to lose some 
of their strength. This phenomenon is known as soil liquefaction. The saturated (water-logged) 
sediment compresses (becomes small) during an earthquake, weakening the ground's tight 
relationship. The water pressure in the soil then accumulates to the point where it begins to rise 
to the surface. As a result, the soil starts to behave like a liquid when the force of the water 
pressure is too great over the bond water-logged sediment minerals. As a result, it disturbs the 
surface sufficiently to force things that were initially on it to either move in either 2D direction or 
submerge like quicksand (Figure 2 is a visual representation of liquefaction). 

The city of Palu is situated right next to the Palu-Koro Fault: The fault is part of the 
Palu-Koro Fault System, which is responsible for causing strike-slip earthquakes in Central 
Sulawesi. As a result, the area around Palu is subject to powerful earthquakes and tsunamis (as a 
result of powerful earthquakes) over the past millennia. What made the 2018 earthquake stand 
out from the others was that the soil liquefaction was one of the worst in history. The two notable 
districts that were hard-hit by liquefaction were Petobo district (located on the Southeastern side 
of the city), Balaroa district (located on the Western side of the city), and Jono Oge (located 
south of Petobo District). The three districts, to this day, have remained uninhabited ever since. 

Unfortunately, there is “relatively little research… focused on liquefaction in Indonesia” 
(Syfia et. Al 2) compared to several other regions in the world at risk of liquefaction (Ex: Japan, 
San Francisco Bay Area, Pacific Northwest, etc.). Without this necessary information, the 
recovery process will be much more costly and time-consuming than is currently happening in 
2018. For example, Disaster management agencies on a national, provincial, and local level will 
have a significantly harder time helping those effected by the soil liquefaction in a timely, 
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efficient manner because the roads and houses were severely damaged which would hinder its 
ability to rescue victims. 

With unsupervised classification, the classified images will give people an idea of where 
the affected areas may be, and which areas that Palu should focus on reinforcing the next time 
soil liquefaction ever strikes again. 

Methods 
​ The satellite imagery used for this study comes from Landsat 8. The image was then 
clipped where the city is the focus of it all and includes the body of water and mountain 
slopes,and to exclude as much cloud cover as possible to ensure that the computer is able to 
cluster and classify fairly. Coordinates were provided through USGS Earth Explorer. The image 
before the earthquake was taken on September 23rd, 2018 while the image after the earthquake 
was taken on October 2nd, 2018. 

Each image has their own file and follows the same process via the Javascript code. The 
project defined 4 classes for the classification process: Vegetation, Bare Land, Urban & Affected 
Areas, and Water. The K-Means Unsupervised Classification process was done in Google Earth 
Engine (shown in Figure 3 below). It’s trained to identify up to 8 different classes in both images 
to ensure that it can sufficiently differentiate between the 4 classes. Once that is done, the final 
classified image will be merged into either one of 4 possible colors in the set based on those 8 
different possibilities. 

The classification process in Google Earth Engine turned out to require more time than 
initially expected. Assigning colors to each cluster will be different from one another every time 
one uses K-Means clustering. In other words, the palette used to label a color for one image 
won’t be the same palette one will use for the other image. It takes time to figure out which class 
abstractly represents the Landsat 8 image. The same goes for merging several clusters together 
from the original to the final classified image. 

Overall, the classification process wasn’t perfect, for example, the clustering process 
identified a cloud on the upper right of Figure 3B as a body of water, when it really isn’t. 
However, the pictures in Figure 3 gives me at least something to work with. 
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Figure 3: Clustering of Palu; Left Image (Figure 3a) is the image before the earthquake; Right image 
(Figure 3b) is the image after the earthquake. 

Once both images were exported as TIF files, both classified images were then 
reprojected to a Universal Transverse Mercator Projection (UTM) 50N because Palu’s extent 
from North-to-South is longer than its East-to-West extent and it also falls into the 50N zone on 
the UTM map. Its symbologies were then modified, and then the total amount per classified field 
was calculated. The areas of interest (Balaroa, Jono Oge, and Petobo Districts) were then 
digitized as polygon features. Each process described in this paragraph was done in ArcGIS Pro. 
The final result is displayed in Figure 4 on the next page. 
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Results 
Unsupervised Classification 

 

Figure 4: Unsupervised Classification of Palu’s Balaroa, Jono Oge, and Petobo Districts. The Orange 
Hatched Fill Polygon Represents Notable Areas of Interest where liquefaction occurred; Left Image 
(Figure 4a) Is the classified image before the earthquake; Right Image (Figure 4b) is the classified image 
after the earthquake. 

​ The effects of the earthquake, according to the unsupervised classification, has caused a 
noticeable increase within the city’s boundaries. In both the liquified areas of Petobo and Jono 
Oge districts, Red (Urban + Affected Areas) is the dominant color after the earthquake while the 
bare land and vegetation areas make up a small percentage within the area. For Balaroa, on the 
other hand, the vegetation and bare land experienced an increase while the urban areas 
experienced a decrease. For the count of pixels in each classified category.   

For the pixel count in each classified category, Table 1 surprisingly shows a decrease in 
both the Bare Land and Urban & Affected Areas Category. However, Urban & Affected Areas 
still has the second highest number of classified pixels in the second image.  

Table 1: The Entire Raster 
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Classified 
Category 

Number of Classified 
Pixels Before 
Earthquake 

Number of Classified 
Pixels After 
Earthquake 

Percentage 
Increase/Decrease (±%) 

Vegetation  41,888 49,778 +18.84% 
Bare Land 82,953 72,133 -13.04% 
Urban & 
Affected Areas 

77,279 72,001 -6.83% 

Water 60,950 69,158 +13.47% 

Conclusion 
​ Overall, I’ve been able to replicate the study that Mutiara Syifa, Prima Riza Kadavi, and 
Chang-Wook Lee have replicated in their article titled: “An Artificial Intelligence Application 
for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia”. The authors use a 
classification technique called artificial neural network (ANN) which involves artificial 
intelligence to classify their 5 classes. The damage areas are highlighted in the Petobo and Jono 
Oge districts in Figure 5, and their results below: 

 

Figure 5: ANN classification technique to identify the damage areas in Red. 

In conclusion, soil liquefaction has inundated the three districts mentioned in the city of 
Palu. In order to prevent a catastrophe like this from happening again, the local, provincial, and 
national authorities must invest more into understanding how Palu can help. While there is no 
way to avoid the dangers of soil liquefactions, Palu residents must come together to figure out 
how best to prepare in case it strikes again. 

Potential Use Cases 
​ There are plenty of possibilities that may involve using an unsupervised map comparison. 
But there a couple that are in most need. Disaster Management agencies can use this information 
to identify which communities are more at risk for soil liquefaction. While it may occur at 
anywhere, some areas like in Petobo district and Jono Oge distrcts were the most hard hit. It’s 
unknown why they’re the hardest hit given the fact that they’re miles apart, however, it gives 
these agencies an opportunity to figure out what other major factor contributed to burying land 
parcels into mud. It could be the elevation, soil makeup, geology, etc. This map may also be 
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useful for telecommunications. When the earthquake hits, residents would now resort to 
cellphones and radios for any news and information regarding their status during this time. 
However, when a disaster may happen at a hard hit area, the choice for residents to call for help 
may be limited because of the downgraded status Palu’s telecommunication systems. 

Problems & Improvements: 
​ Notable limitations were identified while conducting the analysis. For example, on the 
top-right half of the raster after the earthquake erroneously classified the mountainous region as 
an urban/affected area. 

​ Due to time constraints, I wasn’t able to include other analyses such as Normalized 
Difference Built-Up Index (NDBI), it may be a useful tool to analyze the difference between 
vegetation and the urban & affected areas. It subtracts Band 5 from Band 6 (as a numerator) for 
Landsat 8 and then the denominator will add both Bands 5 and 6. The negative value, would’ve 
represented a negative value.  
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