Group Chat

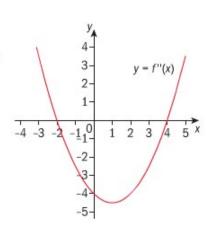
Given that $y = (x + a)^3$ and $\frac{d^2y}{dx^2} = 6x - 3$, find the value of a.

*Note: that strange notation that you see means: second derivative

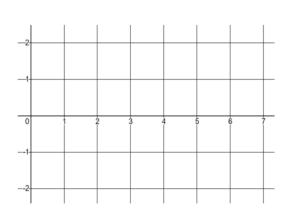
For the function $f(x) = x^3 - 2x^2 + x$, find and classify any turning points. Use both the First Derivative Test *and* the Second Derivative Test. The cubic function $f(x) = x^3 + bx + c$ has a local maximum at (-1, 3). Find the coordinates of the local minimum.

THINK.

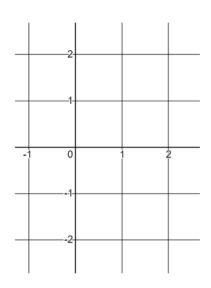
The graph of the *second derivative of f* is shown. Write down the intervals on which *f* is concave up and concave down. Give the *x*-coordinates of any inflexion points.



Sketch a possible graph of f given that f'(2) = 0, f'(6) = 0 and there is a point of inflexion at x = 4.



Sketch a possible graph of g given that g'(1) = 0 and there is a point of inflexion at x = 1.



Given the function:

$$f(x) = 2x^3 - 3x^2 - 12x$$

$$f(x) = 2x^3 - 3x^2 - 12x$$

increasing: $(-\infty, -1)$ and $(2, 0)$

increasing: $(-\infty, -1)$ and $(2, \infty)$

decreasing: (-1,2)

relative maximum: (-1, 7)

relative minimum: (2, -20)

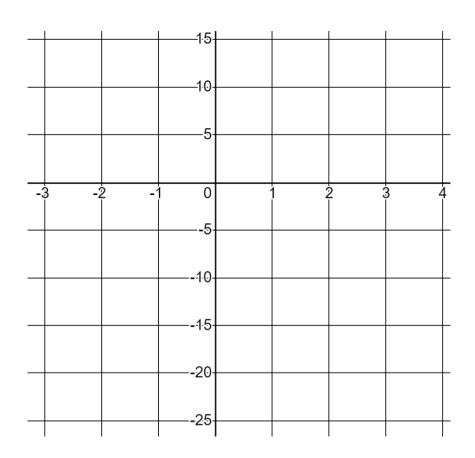
concave down: $\left(-\infty, \frac{1}{2}\right)$

concave up: $\left(\frac{1}{2}, \infty\right)$

inflexion point: $\left(\frac{1}{2}, -\frac{13}{2}\right)$

x-intercepts: (0,0), (-1.8,0), (3.31,0)

y-intercept: (0,0)



Given the function:

$$f(x) = \frac{x^2 - 4}{x^2 - 1}$$

$$f(x) = \frac{x^2 - 4}{x^2 - 1}$$

increasing: $(-\infty, -1)$ and (-1, 0)

decreasing: (0,1) and $(1,\infty)$

relative minimum: (0,4)

concave down: $(-\infty, -1)$ and $(1, \infty)$

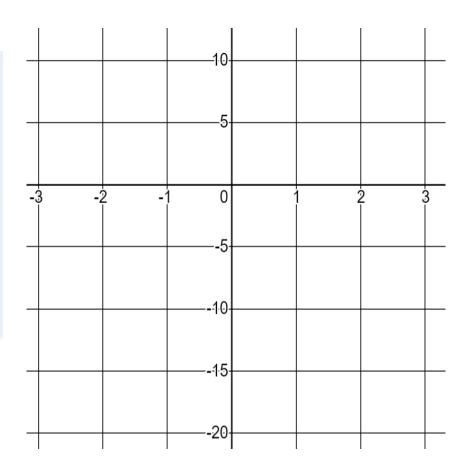
concave up: (-1, 1)

inflexion points: none

x-intercepts: (2,0), (-2,0)

y-intercept: (0,4)

vertical asymptotes: $x = \pm 1$



horizontal asymptote: y = 1

Given the function: $f(x) = 3x^4 + 4x^3 - 2$

- a. Find f'(x). Then, find the critical values, max or min points, and periods of increase/decrease.
- b. Find f"(x). Then, find the points of inflexion and periods of concavity.
- c. Using all the points, sketch a detailed graph of f(x).

