
TLS Encrypted Client Hello (ECH)
This Document is Public

Authors: dmcardle@chromium.org
10/2020

This is a living document. The current focus is ECH in BoringSSL.

Over time, we will flesh out the details on

●​ Chromium integration
●​ Chromium experiment and rollout
●​ QUIC integration.

One-page overview

Summary
The TLS Encrypted ClientHello (ECH) extension enables clients to encrypt ClientHello
messages, which are normally sent in cleartext, under a server’s public key. This avoids
leaking sensitive fields like the server name to the network. ECH is currently specified in
draft-ietf-tls-esni-13. Note that earlier iterations of this specification were called Encrypted
Server Name Indication, or ESNI.

Platforms
All Blink platforms.

Team
dmcardle@chromium.org, davidben@chromium.org, kenjibaheux@chromium.org

Bug
Chromium: https://crbug.com/1091403
BoringSSL: https://crbug.com/boringssl/275

Code affected
Network stack, BoringSSL

https://tools.ietf.org/html/draft-ietf-tls-esni-13
mailto:dmcardle@chromium.org
mailto:davidben@chromium.org
mailto:kenjibaheux@chromium.org
https://crbug.com/1091403
https://crbug.com/boringssl/275

Design

Background
Today, when a client initiates a TLS connection with a server, it sends an unencrypted
ClientHello message containing the server name and other potentially sensitive fields. This
reveals information about the user’s browsing to network adversaries.

TLS Encrypted Client Hello (ECH) enables clients to encrypts the ClientHello message
using an ECHConfigList obtained from DNS HTTPS records. The ECHConfigList contains 1

the server’s public keys and other metadata. See also . DNS HTTPS Records

Given an ECHConfigList, the client encrypts the true “ClientHelloInner” and inserts it into an
encrypted_client_hello extension the “ClientHelloOuter”. The ClientHelloOuter’s (cleartext)
fields should not contain sensitive information.

Constructing the ClientHelloOuter.

1 Note these keys are only as trusted as the connection to the DNS provider. If using DNS over
HTTPS, the keys are as trusted as the DNS provider. If using cleartext DNS, network attackers on
path to the DNS provider can also inject keys. Note, however, the server name is also sent to the
DNS provider.

https://docs.google.com/document/d/1k461sRbddjDGj7Q8f-ZKHZvmB-ENUWSdX_3Fpp2dmXQ/edit#heading=h.7nki9mck5t64
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/

The server then decrypts the ClientHelloInner with its corresponding private keys and
completes the handshake as if ClientHelloInner was sent. On key mismatch or rollback, the
server completes the handshake with ClientHelloOuter, which acts as an authenticated
recovery mechanism.

When Chrome cannot obtain an ECHConfigList for a server, it will send a normal ClientHello
message with a GREASE ECH extension.

BoringSSL
The initial experiment target is ECH draft-13. On the specification side, there are still some
open questions around padding the server response, particular with relation to QUIC.
Initially, we’ll skip server padding, but the final implementation and protocol will
incorporate it in some form.

ECH depends on the Hybrid Public Key Encryption (HPKE) primitive. This has been
implemented in BoringSSL. ECH draft-13 has also been implemented in BoringSSL. The API
is documented here.

Design details:

●​ TLS’s key schedule uses a handshake transcript (see RFC 8446 § 7.1), implemented
by BoringSSL’s SSLTranscript class. On the client, it’s not initially known whether
ClientHelloOuter or ClientHelloInner will be used. We will maintain a second parallel
transcript using the ClientHelloInner. The existing SSL_HANDSHAKE::transcript will
use the ClientHelloOuter, while a new inner_transcript will use the ClientHelloInner.
Once the ClientHello is known, we will replace SSLTranscript::transcript with
inner_transcript as needed.

●​ The server does not maintain two handshakes, but it does use a different

ClientHello. When the server accepts ECH, we retain the ClientHelloInner on
SSL_HANDSHAKE and read from it instead of the ClientHelloOuter.

●​ BoringSSL enables servers to set a callback with SSL_CTX_set_select_certificate_cb,

called after receiving the ClientHello. We will process ECH before this callback is
invoked, so application code selects the certificate, etc., appropriately. Likewise,
SSL_get_servername will return information from the selected ClientHello.

●​ To avoid duplicating large extensions that are already present on the outer

ClientHello, ECH enables ClientHelloInner to point to the ClientHelloOuter’s
extensions with the “outer_extensions” extension. We’ve made the add_clienthello

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-13#section-6.1.6
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-13#section-6.1.6
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-13#section-6.2
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-13
https://github.com/tlswg/draft-ietf-tls-esni/issues/264
https://www.ietf.org/archive/id/draft-irtf-cfrg-hpke-12.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/hpke.h.html
https://commondatastorage.googleapis.com/chromium-boringssl-docs/ssl.h.html#Encrypted-ClientHello

callbacks const, so they can be called twice, once for each ClientHello. The callbacks
additionally specify whether the extension is “compressible”, which indicates they
match between the two ClientHellos and it is public that they do. If so, it is safe to
compress the extension body with “outer_extensions”.

●​ We can omit TLS-1.2-only extensions from the ClientHelloInner.

●​ On the client, if handshaking with ClientHelloOuter, we must authenticate with the

public name. The caller needs an API to modify its certificate verification. We must
also disable client certificates, as those should only be sent to the true name. Finally,
we must fail the handshake on completion, and instead provide an API to pass retry
configs to the caller.

Chrome
Most of ECH in Chrome will be plumbing between the DNS logic and BoringSSL. The
EndpointServiceConnectionInfo structure, to be added as part of HTTPS record work, will
contain the serialized ECHConfigList. SSLConnectJob will read this value and pass it into
SSLClientSocketImpl via a corresponding field in SSLConfig. Note it is important to use
an ECHConfigList that matches the route chosen. Depending on how DNS and
TransportConnectJob interact, we may need to plumb some information out.

From there, SSLClientSocketImpl will configure ECH in BoringSSL if the field is present in
ECHConfigList. It will also enable ECH GREASE, in case no ECHConfig was suitable, or the
field was missing. If ECH is accepted, the connection then proceeds as before.

To handle ECH rejection, SSLClientSocketImpl will call SSL_get0_ech_name_override to
verify with the public name if needed. When verifying with the public name, we will map
certificate errors to a new unbypassable error. Like certificate errors from proxies and DoH,
we will not make ClientHelloOuter certificate errors bypassable. This avoids prompting
users about a bad certificate for a name other than the one they are connecting to.
However, we should trigger the captive portal detector and bad clock logic, if possible.

It will also map SSL_R_ECH_REJECTED to a corresponding error code in //net, and report the
retry configs out of a GetEchRetryConfigs access.

The first time SSLConnectJob sees an ECH reject, it will call GetEchRetryConfigs and retry
the connection with the new value. This implements the recovery flow on key mismatches.

We will not implement any separate ECHConfig cache and instead rely on DNS caching. (An
external ECHConfig cache will not interact correctly with multi-CDN use cases.)

TODO(davidben): Map out how to implement this on the QUIC side as well.

https://docs.google.com/document/d/1k461sRbddjDGj7Q8f-ZKHZvmB-ENUWSdX_3Fpp2dmXQ/edit#heading=h.85l1ahn9z4rg

TODO(davidben): Enterprise policy plans.

🚧 This rest of this document is under construction. 🚧

Metrics

Success metrics
You should list what metrics you will be tracking to measure the success of your feature or
change. This could be a mix of existing and new metrics. If they are new metrics, explain
how they will work. If you aim to improve performance with your feature or change, you
should measure your impact on one of the speed launch metrics.

Regression metrics
You should define what metrics you will be tracking to look for potential regressions
associated with your feature or change. This could be a mix of existing and new metrics.
The speed launch metrics are good candidates for use as performance regression metrics.
If you’re using new metrics, explain how they will work.

Experiments
If you are using Finch to run experiments (see go/newChromeFeature for advice), describe
what experiments you intend to run and what you are looking for in the results. It’s
important that you know in advance what the acceptance criteria are. List the experiment
names so people can look them up (links to the dashboard are even better).

The ECH experiment’s Finch configuration will define a set of domains for which Chrome
will attempt ECH. If the HTTPS DNS experiment is in place, this ECH experiment can obtain
the server’s ECHConfigs through DNS. Otherwise, we can fall back on a “.well-known” location
for key delivery (only for experimentation, as this negates the point of encrypting SNI).

Rollout plan
If you’re just checking in the code and doing a dev-beta-stable progression, just write
“Waterfall” here. If you’re doing a standard experiment-controlled rollout, write that with
the experiment name. If you’re not doing the standard rollout, describe what you’re doing
and why it needs to be different.

https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
http://go/finch-guide
http://goto.google.com/newChromeFeature
https://uma.googleplex.com/p/chrome/histograms

If there are external deadlines, call them out (if you don’t want these to be public, use the
internal template). Otherwise, releases should be quality driven and you shouldn't be
targeting a milestone.

Core principle considerations
Everything we do should be aligned with and consider Chrome’s core principles. If there are
any specific stability concerns, be sure to address them with appropriate experiments.

Speed
Describe the considerations you’re making with respect to how this work impacts Chrome’s
performance (speed, memory usage, power, etc.). Note that no change should regress the
speed launch metrics.

It can be very hard to predict the end-user impact of a change on performance due to the
wide variety of web content, device types, network connections and other factors in the
field. Therefore, speed releasing team strongly recommends that finch is used for any
launch that could plausibly affect speed. Early indicators of performance can be seen by
running benchmarks on the perf trybots or cluster telemetry, but ideally performance
impact would be measured by the speed launch metrics on end users.

Security
Sketch your threat model and describe the system's security mechanisms, especially
around the handling of untrusted data. Be sure to describe any attack surfaces, any known
vulnerabilities or points of failures, as well as any potentially insecure dependencies. If your
feature doesn't have security considerations, explicitly state so (and why).

Privacy considerations
Features with privacy implications should use the internal template for privacy review.

Authenticity of DNS HTTPS Records
Chrome has no proof that HTTPS records and the ECHConfigs they contain are authentic.
(Although records should be authenticated at the DoH resolver.)

A malicious DoH server could disable ECH for a client by dropping ECHConfigs from the
response. Given that the point of ECH is to protect the server name, which DNS already
knows, the resolver does not have much to gain from this attack.

https://docs.google.com/document/d/1VRG_eL9YdTerilvoDv6zambq4JvK18lSzUOFZ7Gkbw8
https://dev.chromium.org/developers/core-principles
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://chromium.googlesource.com/chromium/src/+/master/docs/speed/perf_trybots.md
https://docs.google.com/document/d/1GhqosQcwsy6F-eBAmFn_ITDF7_Iv_rY9FhCKwAnk9qQ/edit
https://docs.google.com/document/d/1Ww487ZskJ-xBmJGwPO-XPz_QcJvw-kSNffm0nPhVpj8/edit
https://docs.google.com/document/d/1VRG_eL9YdTerilvoDv6zambq4JvK18lSzUOFZ7Gkbw8

Alternatively, a malicious DoH server could serve uniquely-identifying ECHConfigs to each
client. When the client uses the spurious ECHConfigs to establish a TLS connection to the
server, it would send a uniquely-identifying ECHConfigs.record_digest value to the server.
In this way, a DNS-level identifier could leak into third-party contexts such as an iframe.
However, a similarly powerful attack could be performed by tampering with the A/AAAA
responses. This attack is not unique to ECH, so we will consider it out of scope.

Testing plan
It goes without saying that all code should have good tests run on the waterfall. You don’t
need to write about that.

Here is where you should describe what the test team may need to consider before
approving your launch. Some features won’t need special testing considerations. If so, say
this and why. Otherwise, give any directions needed to exercise your feature. Call out any
special platforms conditions that may require extra attention.

BoringSSL
BoringSSL tests its TLS implementation with a test suite written in Go. We have
implemented ECH in the Go implementation and written various tests.

One detail of note is, in the Go implementation, the extensions to be compressed are
configurable. This allows us to test the C implementation with a variety of inputs. The C
implementation does not need such a generic capability.

Test Cases for “outer_extensions” Extension
●​ Test the server rejects ClientHelloOuter with “outer_extensions” extension.
●​ Test the server rejects ClientHelloInner with malformed “outer_extensions”

extension.
●​ Test the server accepts ClientHelloInner with valid “outer_extensions” extension

(referencing zero and non-zero number of outer extensions that really exist in
ClientHelloOuter).

●​ Test the server rejects when ClientHelloInner references nonexistent outer
extension.

●​ Test the server rejects when ClientHelloInner references outer extension that
already exists in inner extensions.

https://boringssl.googlesource.com/boringssl/+/refs/heads/master/ssl/test/

Fuzzing
ECH has been integrated into BoringSSL’s “fuzzer mode”. When fuzzing, we skip the
encryption portion of ECH, so the fuzzer can discover interesting ECH-related cases. We
also have a standalone fuzzer for the ClientHelloInner decoder, to cover the
outer_extensions logic.

Chromium

Followup work
How will you assess the success of this work? What needs to be followed-up on? What
(experimental code, for example) needs to be cleaned up after the code has reached the
stable channel?

https://boringssl.googlesource.com/boringssl/+/HEAD/FUZZING.md

	TLS Encrypted Client Hello (ECH)
	One-page overview
	Summary
	Platforms
	Team
	Bug
	Code affected

	Design
	Background
	BoringSSL
	Chrome

	Metrics
	Success metrics
	Regression metrics
	Experiments

	Rollout plan
	Core principle considerations
	Speed
	Security

	Privacy considerations
	Authenticity of DNS HTTPS Records

	Testing plan
	BoringSSL
	Test Cases for “outer_extensions” Extension

	Fuzzing
	Chromium

	Followup work

