
Transitive static libraries
Please read Bazel Code of Conduct before commenting.

Authors: fmeum​
Status: Draft | In review | Approved | Rejected | In progress | Implemented​
Reviewers: oquenchil (LGTM)​
Created: 2023-01-27​
Updated: 2023-03-29
Discussion thread: #1920

Overview
The existing C/C++ rules can produce executables (cc_binary) and shared libraries
(cc_binary with linkshared = True or the currently experimental
cc_shared_library) as final, deployable build outputs. These rules collect intermediate
build artifacts from all their transitive dependencies' CcInfo providers.

Bazel currently doesn't offer a way to produce a single static library (also called an "archive")
from a transitive collection of intermediate targets. Since open-source library projects (such
as Tensorflow) often want to make static libraries available as release artifacts, this limitation
should be lifted via a canonical, officially supported rule for this purpose.

Proposal
Add a cc_static_library rule to Bazel, implemented as a Starlark built-in rule. The rule is
backed by a new action name and a new well-known toolchain feature, which makes the
actual command line of the action producing the static library configurable via toolchains.

Toolchain changes
Action & feature
validate-static-library: A new well-known name for an action that validates a given
static library, e.g. by detecting duplicate symbols. Action invocations are always of the form:

<tool_path> <static library> <validation output file>

https://www.contributor-covenant.org/version/1/4/code-of-conduct
https://github.com/fmeum
https://github.com/oquenchil
https://github.com/bazelbuild/bazel/issues/1920
https://github.com/tensorflow/tensorflow/issues/28388

static_library_validation: A new feature that controls whether
cc_static_library registers validate-static-library as a validation action.

Default toolchain implementations
As static libraries can contain duplicate symbols (the archiver does not check for them), the
validation action should at least ensure that there are no duplicates. The auto-configured
toolchains can provide the following implementations, depending on the available "nm"
tool:

nm
Duplicate symbols can be checked for with a simple shell script:

#!/usr/bin/env sh

set -eu

DUPLICATE_SYMBOLS=$(

 "%{nm}" --demangle --print-file-name "$1" |

 LC_ALL=C sort --key=3 |

 uniq -D --skip-field=2)

if [[-n "$DUPLICATE_SYMBOLS"]]; then

 echo "Duplicate symbols found in $1:" | tee "$2"

 echo "$DUPLICATE_SYMBOLS" | tee --append "$2"

 exit 1

else

 touch "$2"

fi

Rule definition

Name
cc_static_library

Attributes
●​ data: same behavior as on cc_library
●​ deps: label list with entries required to provide CcInfo

Providers
●​ DefaultInfo: the merged archive

●​ OutputGroupInfo

○​ linkopts: A text file containing the deduplicated transitive linkopts, with
one flag per line. Consumers of the transitive static library may need to add
these flags to their own linker invocation.

○​ linkdeps: A text file containing one line per transitive dependency that
provides a shared or static library but not object files, in the form "<exec
path> <owner label>". Consumers of the transitive static library may
need to add these artifacts to their own linker invocation.

○​ targets: A text file containing the targets that contributed an object file,
with one label per line.

○​ _validation: The output of the validate-static-library action, if
the feature static_library_validation is enabled.

The rule does not provide CcInfo as it is not meant to be consumed within the build that
produces it. If users need to do this and are aware of the risk of ODR violations this
introduces, they can wrap the output of the rule in a cc_import.

Rule implementation considerations
●​ The rule is gated behind a new --experimental_cc_static_library flag and

implemented as a Starlark builtin rule with a Java shim.
●​ ctx.actions.args is used for the input files (for memory efficiency) while

get_memory_inefficient_command_line is used to get the flags and output
file path (for toolchain configurability).

●​ For each transitive LibraryToLink, all pic_objects (or objects as a fallback)
are merged into the static library output.

●​ Param files are used if the existing archive_param_file feature is enabled.
●​ The input files to the archiver action can only be obtained by flattening the depset of

transitive linker inputs. This could be prevented by introducing a variant of depset
that includes a "filterMap" style callback.

●​ linkopts, linkdeps and debug_targets are collected at execution time using
ctx.actions.expand_template's computed_substitution parameter. For
the linkdeps output group artifact, static_library is preferred over
dynamic_library.

Compatibility
Adding new rules, actions and features does not affect backwards compatibility.

Document History

Date Description

2023-01-30 First proposal

2023-03-26 Updated to address first round of comments

2023-03-29 Updated to address second round of comments

	Transitive static libraries
	Overview
	Proposal
	Toolchain changes
	Action & feature
	Default toolchain implementations
	nm

	Rule definition
	Name
	Attributes
	Providers

	Rule implementation considerations

	Compatibility
	Document History

