
Supplementary Material 2: Detailed Python Workflow for Data Preprocessing, Model
Training, and Evaluation

Table S1. Computational Environment and Data Preprocessing Workflow

Step/Component Specification/Action
Notes (Applies to All
Models)

Computational
Environment

Python 3.12.6 (Jupyter Notebook), Windows 11, Intel i7-1260P
CPU, 16 GB RAM

Package versions in
Supplementary Materials

Key Libraries Used
pandas, numpy, scikit-learn (1.4.2), imbalanced-learn, matplotlib,
seaborn, tensorflow.keras (2.16.1), xgboost, SHAP (0.45.0)

Raw Data Import File: growth_physo_anatomy_cleaned2.xlsx
Data and code provided as
Supplementary Files

Data Cleaning Dropped categorical columns (cultivar_en, water_cond)
Retained only relevant
numeric features

Target Variable
Encoding

LabelEncoder (scikit-learn): classes = moderate, susceptible,
tolerant

Target encoded as integers
0, 1, 2

Feature Selection
All physiological/anatomical features used; for hybrid, top 10 by
SHAP

See details in respective
model tables

Class Balancing SMOTE (random_state=42) applied before train/test split
Ensures equal class
representation

Train/Test Split
80% training / 20% test, stratified, random_state=42
and 5 fold cross validation

Class proportions
preserved in both sets and
folds

Feature Scaling
StandardScaler for MLP and SVM (fit on train set only); RF/XGB
use raw values

Scaling method chosen by
model type

Random Seed
Initialization

42 applied to NumPy, scikit-learn, TensorFlow/Keras, SMOTE,
and splits

Ensures analyses are
exactly reproducible

Software
Reproducibility

Jupyter notebooks, and environment files provided

Table S2. Random Forest (RF) Model Implementation Details

Step/Component Specification/Value Notes

Software
Environment

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2),
imblearn, matplotlib, seaborn

Version details in
supplement

Data
Preprocessing

Dropped categorical columns, target label-encoded
Only relevant features
kept

Class Balancing SMOTE, random_state=42
Applied before
train-test split

Train/Test Split 80% train / 20% test, stratified, random_state=42
Ensures class
proportions are
preserved

Feature Scaling Not required for Random Forest
Trees are insensitive to
scaling

Feature Selection All features except target used
Feature importance
later via Gini index

Model
Architecture

RandomForestClassifier: grid search over​
n_estimators: [100, 200, 300]​
max_depth: [10, 20, 30]​
min_samples_split: [2, 5, 10]​
min_samples_leaf: [1, 2, 4]​
max_features: ['sqrt', 'log2']

Hyperparameters
chosen by 5-fold CV

Model Training Best model trained on full training set
random_state=42 for
reproducibility

Model Validation Evaluated on held-out test set (20%) and 5-fold cross-validation
Unseen data for fair
assessment and folds

Evaluation
Metrics

Accuracy, macro precision, macro recall, macro F1-score, balanced
accuracy, Matthews correlation coefficient (MCC), Cohen’s kappa, log
loss, macro ROC-AUC (one-vs-rest), hamming loss, confusion matrix,
classification report

All reported in results
and supplement

Interpretability Feature importance from RF (Gini index); visualized as barplot
Supports trait-based
biological insights

Reproducibility random_state=42 everywhere; code and data provided
Enables exact
re-running of analysis

Visualization Confusion matrix, ROC curves, feature importance plot
Provided in
supplement and
notebook

Appendix Table S3. Multi-Layer Perceptron (MLP) Model Implementation Details

Step/Component Specification/Value Notes

Software
Environment

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2),
tensorflow.keras (2.16.1), imblearn, matplotlib, seaborn

Version details in
supplement

Data
Preprocessing

Dropped categorical columns, target label-encoded
Consistent with RF
workflow

Class Balancing SMOTE, random_state=42
Applied before
train-test split

Train/Test Split 80% train / 20% test, stratified, random_state=42 As in RF

Feature Scaling StandardScaler (fit on train, apply to test)
Required for neural
networks

Feature Selection All features except target used
SHAP analysis for
interpretability

Model
Architecture

Keras Sequential:​
3 hidden layers (512, 256, 128, LeakyReLU α=0.1)​
BatchNorm and Dropout (0.3) after each​
Softmax output for 3 classes

Designed for multiclass

Model Training
Adam optimizer (lr=0.001), batch size 16, max 200 epochs​
Early stopping (patience=10), reduce LR on plateau

random_state=42 set for
reproducibility

Model Validation
Best model chosen by validation loss on hold-out test set and 5-fold
cross-validation

Early stopping to
prevent overfitting

Evaluation Metrics
(Same as RF): Accuracy, macro precision, macro recall, macro F1-score,
balanced accuracy, MCC, Cohen’s kappa, log loss, macro ROC-AUC
(one-vs-rest), hamming loss, confusion matrix, classification report

All reported in results
and supplement

Interpretability SHAP DeepExplainer for feature importance
Supports understanding
of complex model

Reproducibility random_state=42 everywhere, tf.random.set_seed(42) Code and data provided

Visualization Training curves, confusion matrix, ROC curves, SHAP plots
Provided in supplement
and notebook

Table S4. Hybrid (Stacking Ensemble) Model Implementation Details

Step/Component Specification/Value Notes

Software
Environment

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2),
xgboost, tensorflow.keras (2.16.1), imblearn, matplotlib, seaborn

Version details in
supplement

Step/Component Specification/Value Notes

Data
Preprocessing

Dropped categorical columns, target label-encoded Same as other models

Class Balancing SMOTE, random_state=42
Applied before train-test
split

Train/Test Split 80% train / 20% test, stratified, random_state=42
Consistent across all
models

Feature Scaling StandardScaler for MLP/SVM; not needed for RF/XGB
Applied to each pipeline
as required

Feature Selection Top 10 features by SHAP value
Used for all base models
and meta-learner

Model
Architecture

Base Models:​
- Random Forest (n_estimators=100, max_depth=20)​
- XGBoost (n_estimators=200)​
- SVM (RBF kernel, C=1.0)​
- MLP (as above)​
Meta-Learner: Logistic Regression (scikit-learn, default params)

StackingClassifier
(scikit-learn) used

Model Training
Base models trained on same train data; meta-learner on out-of-fold
base model predictions

Ensures no data leakage

Model Validation Evaluated on held-out test set (20%) and 5-fold cross-validation
Test set not used in
model selection

Evaluation Metrics

(Same as RF/MLP): Accuracy, macro precision, macro recall, macro
F1-score, balanced accuracy, MCC, Cohen’s kappa, log loss, macro
ROC-AUC (one-vs-rest), hamming loss, confusion matrix, classification
report

All reported in results
and supplement

Interpretability SHAP summary and interaction plots for meta-learner
Highlights top
predictive traits

Reproducibility random_state=42 everywhere; code and data provided
Fully reproducible
pipeline

Visualization Confusion matrix, ROC curves, SHAP plots, feature rankings
Provided in supplement
and notebook

	Supplementary Material 2: Detailed Python Workflow for Data Preprocessing, Model Training, and Evaluation

