
Supplementary Material 2:  Detailed Python Workflow for Data Preprocessing, Model 
Training, and Evaluation 
 

Table S1. Computational Environment and Data Preprocessing Workflow 

Step/Component Specification/Action 
Notes (Applies to All 
Models) 

Computational 
Environment 

Python 3.12.6 (Jupyter Notebook), Windows 11, Intel i7-1260P 
CPU, 16 GB RAM 

Package versions in 
Supplementary Materials 

Key Libraries Used 
pandas, numpy, scikit-learn (1.4.2), imbalanced-learn, matplotlib, 
seaborn, tensorflow.keras (2.16.1), xgboost, SHAP (0.45.0) 

 

Raw Data Import File: growth_physo_anatomy_cleaned2.xlsx 
Data and code provided as 
Supplementary Files 

Data Cleaning Dropped categorical columns (cultivar_en, water_cond) 
Retained only relevant 
numeric features 

Target Variable 
Encoding 

LabelEncoder (scikit-learn): classes = moderate, susceptible, 
tolerant 

Target encoded as integers 
0, 1, 2 

Feature Selection 
All physiological/anatomical features used; for hybrid, top 10 by 
SHAP 

See details in respective 
model tables 

Class Balancing SMOTE (random_state=42) applied before train/test split 
Ensures equal class 
representation 

Train/Test Split 
80% training / 20% test, stratified, random_state=42                             
and 5 fold cross validation  

Class proportions 
preserved in both sets and 
folds 

Feature Scaling 
StandardScaler for MLP and SVM (fit on train set only); RF/XGB 
use raw values 

Scaling method chosen by 
model type 

Random Seed 
Initialization 

42 applied to NumPy, scikit-learn, TensorFlow/Keras, SMOTE, 
and splits 

Ensures analyses are 
exactly reproducible 

Software 
Reproducibility 

Jupyter notebooks, and environment files provided  

 

 

 

 

Table S2. Random Forest (RF) Model Implementation Details 



Step/Component Specification/Value Notes 

Software 
Environment 

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2), 
imblearn, matplotlib, seaborn 

Version details in 
supplement 

Data 
Preprocessing 

Dropped categorical columns, target label-encoded 
Only relevant features 
kept 

Class Balancing SMOTE, random_state=42 
Applied before 
train-test split 

Train/Test Split 80% train / 20% test, stratified, random_state=42 
Ensures class 
proportions are 
preserved 

Feature Scaling Not required for Random Forest 
Trees are insensitive to 
scaling 

Feature Selection All features except target used 
Feature importance 
later via Gini index 

Model 
Architecture 

RandomForestClassifier: grid search over​
n_estimators: [100, 200, 300]​
max_depth: [10, 20, 30]​
min_samples_split: [2, 5, 10]​
min_samples_leaf: [1, 2, 4]​
max_features: ['sqrt', 'log2'] 

Hyperparameters 
chosen by 5-fold CV 

Model Training Best model trained on full training set 
random_state=42 for 
reproducibility 

Model Validation Evaluated on held-out test set (20%) and 5-fold cross-validation 
Unseen data for fair 
assessment and folds 

Evaluation 
Metrics 

Accuracy, macro precision, macro recall, macro F1-score, balanced 
accuracy, Matthews correlation coefficient (MCC), Cohen’s kappa, log 
loss, macro ROC-AUC (one-vs-rest), hamming loss, confusion matrix, 
classification report 

All reported in results 
and supplement 

Interpretability Feature importance from RF (Gini index); visualized as barplot 
Supports trait-based 
biological insights 

Reproducibility random_state=42 everywhere; code and data provided 
Enables exact 
re-running of analysis 

Visualization Confusion matrix, ROC curves, feature importance plot 
Provided in 
supplement and 
notebook 

Appendix Table S3. Multi-Layer Perceptron (MLP) Model Implementation Details 



Step/Component Specification/Value Notes 

Software 
Environment 

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2), 
tensorflow.keras (2.16.1), imblearn, matplotlib, seaborn 

Version details in 
supplement 

Data 
Preprocessing 

Dropped categorical columns, target label-encoded 
Consistent with RF 
workflow 

Class Balancing SMOTE, random_state=42 
Applied before 
train-test split 

Train/Test Split 80% train / 20% test, stratified, random_state=42 As in RF 

Feature Scaling StandardScaler (fit on train, apply to test) 
Required for neural 
networks 

Feature Selection All features except target used 
SHAP analysis for 
interpretability 

Model 
Architecture 

Keras Sequential:​
3 hidden layers (512, 256, 128, LeakyReLU α=0.1)​
BatchNorm and Dropout (0.3) after each​
Softmax output for 3 classes 

Designed for multiclass 

Model Training 
Adam optimizer (lr=0.001), batch size 16, max 200 epochs​
Early stopping (patience=10), reduce LR on plateau 

random_state=42 set for 
reproducibility 

Model Validation 
Best model chosen by validation loss on hold-out test set  and 5-fold 
cross-validation 

Early stopping to 
prevent overfitting 

Evaluation Metrics 
(Same as RF): Accuracy, macro precision, macro recall, macro F1-score, 
balanced accuracy, MCC, Cohen’s kappa, log loss, macro ROC-AUC 
(one-vs-rest), hamming loss, confusion matrix, classification report 

All reported in results 
and supplement 

Interpretability SHAP DeepExplainer for feature importance 
Supports understanding 
of complex model 

Reproducibility random_state=42 everywhere, tf.random.set_seed(42) Code and data provided 

Visualization Training curves, confusion matrix, ROC curves, SHAP plots 
Provided in supplement 
and notebook 

 

 

 

Table S4. Hybrid (Stacking Ensemble) Model Implementation Details 

Step/Component Specification/Value Notes 

Software 
Environment 

Python (Jupyter Notebook), pandas, numpy, scikit-learn (1.4.2), 
xgboost, tensorflow.keras (2.16.1), imblearn, matplotlib, seaborn 

Version details in 
supplement 



Step/Component Specification/Value Notes 

Data 
Preprocessing 

Dropped categorical columns, target label-encoded Same as other models 

Class Balancing SMOTE, random_state=42 
Applied before train-test 
split 

Train/Test Split 80% train / 20% test, stratified, random_state=42 
Consistent across all 
models 

Feature Scaling StandardScaler for MLP/SVM; not needed for RF/XGB 
Applied to each pipeline 
as required 

Feature Selection Top 10 features by SHAP value 
Used for all base models 
and meta-learner 

Model 
Architecture 

Base Models:​
- Random Forest (n_estimators=100, max_depth=20)​
- XGBoost (n_estimators=200)​
- SVM (RBF kernel, C=1.0)​
- MLP (as above)​
Meta-Learner: Logistic Regression (scikit-learn, default params) 

StackingClassifier 
(scikit-learn) used 

Model Training 
Base models trained on same train data; meta-learner on out-of-fold 
base model predictions 

Ensures no data leakage 

Model Validation Evaluated on held-out test set (20%) and 5-fold cross-validation 
Test set not used in 
model selection 

Evaluation Metrics 

(Same as RF/MLP): Accuracy, macro precision, macro recall, macro 
F1-score, balanced accuracy, MCC, Cohen’s kappa, log loss, macro 
ROC-AUC (one-vs-rest), hamming loss, confusion matrix, classification 
report 

All reported in results 
and supplement 

Interpretability SHAP summary and interaction plots for meta-learner 
Highlights top 
predictive traits 

Reproducibility random_state=42 everywhere; code and data provided 
Fully reproducible 
pipeline 

Visualization Confusion matrix, ROC curves, SHAP plots, feature rankings 
Provided in supplement 
and notebook 
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