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UNIT II 
 DATA TYPES, EXPRESSIONS, STATEMENTS  

 
 

1.​ Python interpreter and interactive mode,debugging;  
2.​ Values and types: int, float, boolean, string, and list;  
3.​ Variables 

3.1 Expressions 
3.2 Statements 
3.3 Tuple assignment 
3.4 Precedence of operators 
3.5 Comments 

4.​ Illustrative programs:  
4.1 Exchange the values of two variables 
4.2 Circulate the values of n variables 
4.3 Distance between two points. 
 

 
1.​ Python interpreter 

●​ Python is a cross-platform programming language, meaning, it runs on 
multiple platforms like Windows, Mac OS X, Linux, Unix 

●​ It is free and open source. 
 

Starting the Interpreter 
●​ The Python interpreter is a program that reads and executes Python code. 
●​ After installation, the python interpreter lives in the installed directory. 
●​ Now there are two ways to start Python. 

1.​ Interactive mode 
2.​ Script Mode 

 
Interactive mode 

●​ Typing python in the command line will invoke the interpreter in interactive 
mode. 
>>>    -  is a prompt that indicates that the interpreter is ready for you to enter 
code. 
>>> 5 + 4  
9  

●​ This prompt can be used as a calculator. To exit this mode type exit() or quit() 
and press enter. 

 
Script Mode 

●​ This mode is used to execute Python program written in a file. 
●​ Such a file is called a script. 
●​ Python scripts have the extension .py 
●​ For example: helloWorld.py 
●​ To execute this file in script mode we simply write python helloWorld.py at the 

command prompt. 
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bug: An error in a program.  
debugging: The process of finding and removing any of the three kinds of 
programming errors.  
syntax: The structure of a program.  
syntax error: An error in a program that makes it impossible to parse (and therefore 
impossible to interpret).  
exception: An error that is detected while the program is running.  
semantics: The meaning of a program. 

 
2. Values and types 

●​ A value is one of the basic things a program.  
●​ There are different values integers, float and strings.   
●​ The numbers with a decimal point belong to a type called float. 
●​ The values written in quotes will be considered as string, even it’s an integer. 
●​ If type of value is not known it can be interpreted as  

Eg: >>> type('Hello, World!')  
<type 'str'>  
>>> type(17) 
<type 'int'>  
>>> type('17')  
<type 'str'>  
>>> type('3.2')  
<type 'str'> 

 
Standard Data Types 

●​ Python has various standard data types that are used to define the operations 
possible on them and the storage method for each of them.  

●​ Python has five standard data types −   
❖​ Numbers   
❖​ String  
❖​ List   
❖​ Tuple   
❖​ Dictionary 

 
Python Numbers  

●​ Number data types store numeric values.  
●​ Number objects are created when you assign a value to them.  
●​ For example –  

var1 =1  
var2 =10  

●​ You can also delete the reference to a number object by using the del statement.  
●​ The syntax of the del statement is −  

del var1[,var2[,var3[....,varN]]]]  
 
Python Strings    

●​ Strings in Python are identified as a contiguous set of characters represented in the 
quotation marks.  

●​ Python allows for either pairs of single or double quotes.  
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●​ Subsets of strings can be taken using the slice operator ([ ] and [:] ) with indexes 
starting at 0 in the beginning of the string and working their way from -1 at the end.   

●​ The plus (+) sign is the string concatenation operator and the asterisk (*) is the 
repetition operator.  

●​ For example –  
str = 'Python Programming' print str               # Prints complete string  
print str[0]           # Prints first character of the string  
print str[-1]          # Prints last character of the string  
print str[2:5]         # Prints characters starting from 3rd to 5th  
print str[2:]          # Prints string starting from 3rd character  
print str * 2          # Prints string two times  
print str + " Course"     # Prints concatenated string  
 
This will produce the following result –  
 
Python Programming  
P  
g 
tho  
thon Programmin  
Python ProgrammingPython Programming  
Python Programming Course 
 

Python Lists    
●​ Lists are the most versatile of Python's compound data types.  
●​ A list contains items separated by commas and enclosed within square brackets ([]). 
●​ To some extent, lists are similar to arrays in C.  
●​ One difference between them is that all the items belonging to a list can be of 

different data type.    
●​ The values stored in a list can be accessed using the slice operator ([ ] and [:]) with 

indexes starting at 0 in the beginning of the list and working their way to end -1.  
●​ The plus (+) sign is the list concatenation operator, and the asterisk (*) is the 

repetition operator.  
●​ For example −  

list = [ 'Hai', 123 , 1.75, 'vinu', 100.25 ]  
smalllist = [251, 'vinu']  
print list               
print list[0]            
print list[-1]           
print list[1:3]          
print list[2:]           
print smalllist * 2       
print list + smalllist      
 
This produces the following result –  
['Hai', 123, 1.75, 'vinu', 100.25]  
Hai  
100.25  
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[123, 1.75]  
[1.75, 'vinu', 100.25]  

[251, 'vinu', 251, 'vinu']  
['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu'] 

 
Python Boolean  

●​  A Boolean type was added to Python 2.3.  
●​ Two new constants were added to the __builtin__ module,  
●​ True and False.  
●​ True and False are simply set to integer values of 1 and 0 and aren't a different type.  

>>>bool(1)  
True  
>>>bool(0)  
False  
>>> False + 1  
1  
>>> False * 85  
0  
>>> True * 85  
85  
>>>True+True  
2  
>>>False+False  
0  

 
3 VARIABLES    

●​ A variable is a name that refers to a value.  
●​ Variable reserved memory locations to store values.  
●​ This means that when you create a variable you reserve some space in memory. 
●​ Based on the data type of a variable, the interpreter allocates memory and decides 

what can be stored in the reserved memory 
 
Assignment Statements   

●​ An assignment statement creates a new variable and gives it a value:  
>>>message = 'Introducing Python Variable'  
>>>num = 15  
>>>radius = 5.4    

●​ This example makes three assignments.  
●​ The first assigns a string to a new variable named message;  
●​ the second gives the integer 15 to num;  
●​ the third assigns floating point value 5.4 to variable radius. 

 
Variable Names    

●​ Programmers generally choose names for their variables that are meaningful  
●​ The Rules   

❖​ Variables names must start with a letter or an underscore,such as:  
_mark  
mark_   
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❖​ The remainder of your variable name may consist of letters, numbers and 
underscores.  
subject1  
my2ndsubject  
un_der_scores   

❖​ Names are case sensitive.  
case_sensitive, CASE_SENSITIVE, and Case_Sensitive are each a different 
variable.   

❖​ Can be any (reasonable) length  
❖​ There are some reserved (KeyWords)words which you cannot use as a 

variable name 
●​ If you give a variable an illegal name, you get a syntax error:   

>>>1book = 'python'   
SyntaxError: invalid syntax   
>>>more@ = 1000000   
SyntaxError: invalid syntax   
>>>class = 'Fundamentals of programming'   
SyntaxError: invalid syntax    

●​ 1book is illegal because it begins with a number.  
●​ more@ is illegal because it contains an illegal character,  
●​ class is illegal because it is a keyword. 

 
Good Variable Name   

●​ Choose meaningful name instead of short name.  
●​ roll_no is better than rn.   
●​ Maintain the length of a variable name.  
●​ Roll_no_of_a_student is too long?  Be consistent; roll_no or orRollNo   
●​ Begin a variable name with an underscore(_) character for a special case. 

 
3.1 EXPRESSIONS AND STATEMENTS  

●​ An expression is a combination of values, variables, and operators.  
●​ A value all by itself is considered an expression, and so is a variable, so the following 

are all legal expressions:   
>>> 50  
50 
>>> 10<5  
False  
>>> 50+20  
70    

●​ When you type an expression at the prompt, the interpreter evaluates it, which 
means that it finds the value of the expression.     

 
3.2 STATEMENT 

●​ A statement is a unit of code that has an effect, like creating a variable or displaying 
a value.   
>>> n = 25  
>>>print(n)    

●​ The first line is an assignment statement that gives a value to n.  
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●​ The second line is a print statement that displays the value of n.  
●​ When you type a statement, the interpreter executes it, which means that it does 

whatever the statement says.  
●​ In general, statements don’t have values. 

 
Difference Between a Statement and an Expression    

●​  A statement is a complete line of code that performs some action, while an 
expression is any section of the code that evaluates to a value.  

●​ Expressions can be combined ―horizontally‖ into larger expressions using 
operators, while statements can only be combined ―vertically‖ by writing one after 
another, or with block constructs.  

●​ Every expression can be used as a statement, but most statements cannot be used 
as expressions. 

 
 
3.3 TUPLE ASSIGNMENT 

●​ It is often useful to swap the values of two variables.  
●​ With conventional assignments, you have to use a temporary variable.  
●​ For example, to swap a and b:  

>>>temp = a  
>>> a = b  
>>> b = temp  
>>>a, b = b, a  

●​ This is called tuple assignment  
●​ The left side is a tuple of variables; the right side is a tuple of expressions.  
●​ Each value is assigned to its respective variable.  
●​ All the expressions on the right side are evaluated before any of the assignments. 
●​ The number of variables on the left and the number of values on the right have to be 

the same. 
>>>a, b = 1, 2, 3  
ValueError: too many values to unpack  

●​ More generally, the right side can be any kind of sequence (string, list or tuple).  
●​ For example, to split an email address into a user name and a domain, you could 

write:  
>>>addr = 'monty@python.org'  
>>>uname, domain = addr.split('@')  
The return value from split is a list with two elements; the first element is assigned to 
uname, the second to domain.  
>>>uname 'monty'  
>>>domain 'python.org' 

 
3.4 OPERATORS 

●​ Operators are special symbols in Python that carry out computation.  
●​ The value that the operator operates on is called the operand.  

For example:  
>>>10+5  
15  

●​ Here, + is the operator that performs addition.  
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●​ 10 and 5 are the operands and 15 is the output of the operation.  
●​ Python has a number of operators which are classified below.   

1)​ Arithmetic operators   
2)​ Comparison (Relational) operators   
3)​ Logical (Boolean) operators   
4)​ Bitwise operators  
5)​ Assignment operators   
6)​ Special operators 

 
i) Arithmetic Operators  

●​ Arithmetic operators are used to perform mathematical operations like 
addition, subtraction, multiplication etc. 
Example  
x = 7  
y = 3  
print('x + y =',x+y)  
print('x - y =',x-y)  
print('x * y =',x*y)  
print('x / y =',x/y)  
print('x // y =',x//y)  
print('x % y =',x%y)  
print('x ** y =',x**y)  
 
When you run the program, the output will be:  
x + y = 10  
x - y = 4  
x * y = 21  
x / y = 2.3333333333333335  
x // y = 2  
x % y = 1  
x ** y = 343 

 
ii) Comparison or Relational Operators 

 
●​ Comparison operators are used to compare values. It either returns True or 

False according to the condition. 
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Example 
x = 5 
y = 7 
print('x > y is',x>y) 
print('x < y is',x<y) 
print('x == y is',x==y) 
print('x != y is',x!=y) 
print('x >= y is',x>=y) 
print('x <= y is',x<=y) 
 
When you run the program, the output will be: 
 
x >y is False 
x <y is True 
x == y is False 
x != y is True 
x >= y is False 
x <= y is True 
 
iii)Logical Operators 

●​ Logical operators are the and, or, not operators. 

 
Example 
x = True 
y = False 
print('x and y is',x and y) 
print('x or y is',x or y) 
print('not x is',not x) 
 
When you run the program, the output will be: 
 
x and y is False 
x or y is True 
not x is False 
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iv) Bitwise Operators 
●​ Bitwise operators act on operands as if they were string of binary digits. It operates 

bit by bit, hence the name. 
 
For example, 2 is 10 in binary and 7 is 111. 

 

 
Example 

 
x=10 
y=4 
print('x& y=',x& y) 
print('x | y=',x | y) 
print('~x=',~x) 
print('x ^ y=',x ^ y) 
print('x>> 2=',x>> 2) 
print('x<< 2=',x<< 2) 

 
When you run the program, the output will be: 
x& y= 0 
x | y= 14 
~x= -11 
x ^ y= 14 
x>> 2= 2 
x<< 2= 40 

 
v) Assignment Operators 

●​ Assignment operators are used in Python to assign values to variables. 
●​ a=10 assigns the value 10 on the right side to the variable a on the left. 
●​ There are various compound operators in Python like a += 10 that adds to the 

variable and later assigns the same. It is equivalent to a = a + 10. 
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vi) Special Operators 
●​ Python language offers some special type of operators like the identity operator or 

the membership operator. They are described below with examples. 
 

a)​ Identity Operators 
●​ is and is not are the identity operators in Python. They are used to 

check if two values (or variables) are located on the same part of the 
memory.  

●​ Two variables that are equal does not imply that they are identical. 

 
Example 
 
x1 = 7 
y1 = 7 
x2 = 'Welcome' 
y2 = 'Welcome' 
x3 = [1,2,3] 
y3 = [1,2,3] 
print(x1 is not y1) 
print(x2 is y2) 
print(x3 is y3) 
When you run the program, the output will be: 
False 
True 
False 
 

b)​ Membership Operators 
●​ in and in not are the membership operator. 
●​ They are used to test whether a value or a variable is found in a 

sequence ( string, list, tuple, set and dictionary) 

 
 

​ ​       Example 
 
x = 'Python Programming' 
print('Program' not in x) 
print('Program' in x) 
print('program' in x) 
When you run the program, the output will be: 
False 
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True 
False 
●​ Here, ' Program ' is in x but ' program' is not present in x, since Python 

is case sensitive 
 

3.4.1 PRECEDENCE OF PYTHON OPERATORS 
●​ The combination of values, variables, operators and function calls is termed as 

an expression. 
●​ Python interpreter can evaluate a valid expression.  
●​ When an expression contains more than one operator, the order of evaluation 

depends on the Precedence of operations. 
 
For example, multiplication has higher precedence than subtraction. 
>>> 20 – 5*3 
5 
 
But we can change this order using parentheses () as it has higher precedence. 
>>> (20 - 5) *3 
45 
 

●​ The operator precedence in Python are listed in the following table. It is in 
descending order, upper group has higher 

 
3.4.2 ASSOCIATIVITY OF PYTHON OPERATORS 

●​ We can see in the above table that more than one operator exists in the same group. 
●​ These operators have the same precedence. 
●​ When two operators have the same precedence, associativity helps to determine 

which the order of operations. 
●​ Associativity is the order in which an expression is evaluated that has multiple 

operator of the same precedence.  
●​ Almost all the operators have left-to-right associativity. 

 
For example, multiplication and floor division have the same precedence. 
Hence, if both of them are present in an expression, left one is evaluates first. 
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>>> 10 * 7 // 3 
23 
>>> 10 * (7//3) 
20 
>>> (10 * 7)//3 
23 
 
We can see that 10 * 7 // 3 is equivalent to (10 * 7)//3. 
Exponent operator ** has right-to-left associativity in Python. 
>>> 5 ** 2 ** 3 
390625 
>>> (5** 2) **3 
15625 
>>> 5 **(2 **3) 
390625 
We can see that 2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2). 
 

3.5 COMMENTS 
●​ As programs get bigger and more complicated, they get more difficult to read. 
●​ Formal languages are dense, and it is often difficult to look at a piece of code and 

figure out what it is doing, or why.  
●​ For this reason, it is a good idea to add notes to your programs to explain in natural 

language what the program is doing.  
●​ These notes are called comments, and they start with the # symbol: 

 
# compute Area of a triangle using Base and Height 
area= (base*height)/2 

●​ In this case, the comment appears on a line by itself. You can also put comments at 
the end of a line: 

 
area= (base*height)/2 # Area of a triangle using Base and Height 

●​ Everything from the # to the end of the line is ignored—it has no effect on the 
execution of the program.  

●​ Comments are most useful when they document non-obvious features of the code.  
●​ If we have comments that extend multiple lines, one way of doing it is to use hash (#) 

in the beginning of each line. For example: 
 
#This is a long comment 
#and it extends 
#to multiple lines 
 

●​ Another way of doing this is to use triple quotes, either ''' or """. 
"""This is also a 
perfect example of 
multi-line comments""" 
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4. ILLUSTRATIVE PROBLEMS 
4.1 EXCHANGE THE VALUES OF TWO VARIABLES 

●​ In python exchanging the values can be done in three ways 
​ i) Using third variable 
​ ii) Using tuple assignment method 
​ iii) Using arithmetic operator 
​ iv) Using bitwise operator 

 
 4.1.1 Using third variable 
1 var1 = input("Enter value of variable1: ") 
2 var2 = input("Enter value of variable2: ") 
3 temp = var1 
4 var1 = var2 
5 var2 = temp 
6 print("After swapping:") 
7 print("First Variable =",var1,) 
8 print("Second Variable=",var2,) 
 
When you run the program, the output will be: 
 
Enter value of variable1: 5 
Enter value of variable2: 10 
After swapping: 
First Variable = 10 
Second Variable= 5 
 
4.1.2 Using tuple assignment 

●​ In this method instead of using the line number 3,4 and 5 we can just code 
var1,var2=var2,var1 

 
4.1.3 Using arithmetic operator 
 
4.1.3.1 Addition and Subtraction 

●​ In this method in the above program instead of line number 3,4,5 use the following 
code 

x = x + y 
y = x - y 
x = x - y 
 
4.1.3.2 Multiplication and Division 

●​ In this method in the above program instead of line number 3,4,5 use the following 
code 

x = x * y 
y = x / y 
x = x / y 
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4.1.4 Using Bitwise Operator 
●​ If the variables are integers then we can perform swapping with the help of bitwise 

XOR operator.  
●​ In order to do this in the above program instead of line number 3,4,5 use the 

following code 
 

x = x ^ y 
y = x ^ y 
x = x ^ y 
 
4.2 CIRCULATE THE VALUE OF N VARIABLES 

●​ Problem of circulating a Python list by an arbitrary number of items to the right or left 
can be easily performed by List slicing operator. 

 
●​ Consider the above list Figure 2.4.a; circulation of the above list by n position can be 

easily achieved by slicing the array into two and concatenating them.  
●​ Slicing is done as nth element to end element + beginning element to n-1th element. 

Suppose n=2 means, given list is rotated 2 positions towards left side  

 
●​ Suppose n= - 2 means, given list is rotated 2 position towards right side 

 
 

●​ So the simple function to perform this circulation operation is 
 

def circulate(list, n): 
return list[n:] + list[:n] 
>>> circulate([1,2,3,4,5,6,7], 2) 
[3, 4, 5, 6, 7, 1, 2] 
>>> circulate([1,2,3,4,5,6,7], -2) 
[6, 7, 1, 2, 3, 4, 5] 

 
4.3 DISTANCE BETWEEN TWO POINT 
 
Import math 
p1=[4,0] 
p2=[6,6] 
distance=math.sqrt((p1[0]-p2[0]**2)+p1[1]-p2[1]**2)) 
print(distance) 
 
Output 
Distance between two points 
6.3245532 
 

 


