N

UNIT I
DATA TYPES, EXPRESSIONS, STATEMENTS

Python interpreter and interactive mode,debugging;
Values and types: int, float, boolean, string, and list;
Variables

3.1 Expressions

3.2 Statements

3.3 Tuple assignment

3.4 Precedence of operators

3.5 Comments

Illustrative programs:

4.1 Exchange the values of two variables

4.2 Circulate the values of n variables

4.3 Distance between two points.

Python interpreter
e Python is a cross-platform programming language, meaning, it runs on
multiple platforms like Windows, Mac OS X, Linux, Unix
e |tis free and open source.

Starting the Interpreter
e The Python interpreter is a program that reads and executes Python code.
e After installation, the python interpreter lives in the installed directory.
e Now there are two ways to start Python.
1. Interactive mode
2. Script Mode

Interactive mode
e Typing python in the command line will invoke the interpreter in interactive

mode.

>>> - is a prompt that indicates that the interpreter is ready for you to enter
code.

>>>5+4

9

e This prompt can be used as a calculator. To exit this mode type exit() or quit()
and press enter.

Script Mode

This mode is used to execute Python program written in a file.

Such afile is called a script.

Python scripts have the extension .py

For example: helloWorld.py

To execute this file in script mode we simply write python helloWorld.py at the
command prompt.

bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of
programming errors.

syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (and therefore
impossible to interpret).

exception: An error that is detected while the program is running.

semantics: The meaning of a program.

2. Values and types

A value is one of the basic things a program.

There are different values integers, float and strings.

The numbers with a decimal point belong to a type called float.
The values written in quotes will be considered as string, even it’s an integer.
If type of value is not known it can be interpreted as

Eg: >>> type('Hello, World!")

<type 'str'’>

>>> type(17)

<type 'int'>

>>> type('17')

<type 'str'>

>>> type('3.2")

<type 'str'>

Standard Data Types
e Python has various standard data types that are used to define the operations
possible on them and the storage method for each of them.

e Python has five standard data types -
« Numbers
< String
« List
< Tuple
+« Dictionary

Python Numbers

e Number data types store numeric values.

e Number objects are created when you assign a value to them.

e Forexample —
var1 =1
var2 =10
You can also delete the reference to a number object by using the del statement.
The syntax of the del statement is -
del var1[,var2[,var3|....,varN]]]]

Python Strings
e Strings in Python are identified as a contiguous set of characters represented in the
quotation marks.
e Python allows for either pairs of single or double quotes.

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes
starting at 0 in the beginning of the string and working their way from -1 at the end.
The plus (+) sign is the string concatenation operator and the asterisk (*) is the
repetition operator.

For example —

str = 'Python Programming' print str # Prints complete string
print str[0] # Prints first character of the string

print str[-1] # Prints last character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + " Course" # Prints concatenated string
This will produce the following result —

Python Programming

P

g

tho

thon Programmin

Python ProgrammingPython Programming
Python Programming Course

Python Lists

Lists are the most versatile of Python's compound data types.

A list contains items separated by commas and enclosed within square brackets ([]).
To some extent, lists are similar to arrays in C.

One difference between them is that all the items belonging to a list can be of
different data type.

The values stored in a list can be accessed using the slice operator ([] and [:]) with
indexes starting at 0 in the beginning of the list and working their way to end -1.
The plus (+) sign is the list concatenation operator, and the asterisk (*) is the
repetition operator.

For example —

list = ['Hai', 123 , 1.75, 'vinu', 100.25]

smalllist = [251, 'vinu']

print list

print list[0]

print list[-1]

print list[1:3]

print list[2:]

print smalllist * 2

print list + smalllist

This produces the following result —
[Hai', 123, 1.75, 'vinu', 100.25]

Hai

100.25

[123, 1.75]
[1.75, 'vinu', 100.25]
[251, 'vinu', 251, 'vinu']
[Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

Python Boolean
e A Boolean type was added to Python 2.3.
e Two new constants were added to the __ builtin__ module,
e True and False.
e True and False are simply set to integer values of 1 and 0 and aren't a different type.
>>>pool(1)
True
>>>hool(0)
False
>>> False + 1
1
>>> False * 85
0
>>> True * 85
85
>>>True+True
2
>>>False+False
0

3 VARIABLES

A variable is a name that refers to a value.

Variable reserved memory locations to store values.

This means that when you create a variable you reserve some space in memory.
Based on the data type of a variable, the interpreter allocates memory and decides
what can be stored in the reserved memory

Assignment Statements
e An assignment statement creates a new variable and gives it a value:
>>>message = 'Introducing Python Variable'
>>>num = 15
>>>radius = 5.4
This example makes three assignments.
The first assigns a string to a new variable named message;
the second gives the integer 15 to num;
the third assigns floating point value 5.4 to variable radius.

Variable Names
e Programmers generally choose names for their variables that are meaningful
e The Rules
« Variables names must start with a letter or an underscore,such as:
_mark
mark_

% The remainder of your variable name may consist of letters, numbers and
underscores.
subject1
my2ndsubject
un_der_scores
Names are case sensitive.
case_sensitive, CASE_SENSITIVE, and Case_Sensitive are each a different
variable.
% Can be any (reasonable) length
« There are some reserved (KeyWords)words which you cannot use as a
variable name
If you give a variable an illegal name, you get a syntax error:
>>>1book = 'python’
SyntaxError: invalid syntax
>>>more@ = 1000000
SyntaxError: invalid syntax
>>>class = 'Fundamentals of programming'
SyntaxError: invalid syntax
1book is illegal because it begins with a number.
more@ is illegal because it contains an illegal character,
class is illegal because it is a keyword.

2
*%

Good Variable Name

Choose meaningful name instead of short name.

roll_no is better than rn.

Maintain the length of a variable name.

Roll_no_of _a_student is too long? Be consistent; roll_no or orRolINo
Begin a variable name with an underscore(_) character for a special case.

3.1 EXPRESSIONS AND STATEMENTS

An expression is a combination of values, variables, and operators.

A value all by itself is considered an expression, and so is a variable, so the following
are all legal expressions:

>>> 50

50

>>> 10<5

False

>>> 50420

70

When you type an expression at the prompt, the interpreter evaluates it, which
means that it finds the value of the expression.

3.2 STATEMENT

A statement is a unit of code that has an effect, like creating a variable or displaying
a value.

>>>n=25

>>>print(n)

The first line is an assignment statement that gives a value to n.

The second line is a print statement that displays the value of n.

When you type a statement, the interpreter executes it, which means that it does
whatever the statement says.

In general, statements don’t have values.

Difference Between a Statement and an Expression

A statement is a complete line of code that performs some action, while an
expression is any section of the code that evaluates to a value.

Expressions can be combined —horizontallyll into larger expressions using
operators, while statements can only be combined —verticallyll by writing one after
another, or with block constructs.

Every expression can be used as a statement, but most statements cannot be used
as expressions.

3.3 TUPLE ASSIGNMENT

It is often useful to swap the values of two variables.

With conventional assignments, you have to use a temporary variable.

For example, to swap a and b:

>>>temp = a

>>>g=Db

>>> b =temp

>>>3, b=Db,a

This is called tuple assignment

The left side is a tuple of variables; the right side is a tuple of expressions.

Each value is assigned to its respective variable.

All the expressions on the right side are evaluated before any of the assignments.
The number of variables on the left and the number of values on the right have to be
the same.

>>>a, b=1,2,3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list or tuple).
For example, to split an email address into a user name and a domain, you could
write:

>>>addr = 'monty@python.org'

>>>uname, domain = addr.split('@")

The return value from split is a list with two elements; the first element is assigned to
uname, the second to domain.

>>>uname 'monty’

>>>domain 'python.org'

3.4 OPERATORS

Operators are special symbols in Python that carry out computation.
The value that the operator operates on is called the operand.

For example:

>>>10+5

15

Here, + is the operator that performs addition.

e 10 and 5 are the operands and 15 is the output of the operation.
e Python has a number of operators which are classified below.

1)
2)
3)
4)
5)
6)

Arithmetic operators

Comparison (Relational) operators
Logical (Boolean) operators
Bitwise operators

Assignment operators

Special operators

i) Arithmetic Operators
Arithmetic operators are used to perform mathematical operations like

addition, subtraction, multiplication etc.

Example

x=7

y=3

print('’x +y =',x+y)

print('x - y =',x-y)

print('x * y =',x*y)

print('x / y =',x/y)

print('’x /1 y ='x/ly)

print('x % y ='x%y)
(

print('’x ** y =',x**y)

When you run the program, the output will be:

x+y=10
X-y=4
x*y=21
x/y=2.3333333333333335
xlly=2
X%y=1
X **y =343
Operaior MMeaning Example
+ Add two operands or unary plhus ."'._I + ¥
- Subetract right operand from the left or unary minas X - ¥
iy |
' Multiply two operands 'y
{ Divide left operand by the rght one (always results mio | z/y
flaat)
Y Midulus - remainder of the division of left operand by the | ® & v (remainder
Tight of 2]
Floor division - division that results info whole mumber [x /v
adjusted o the left in the mumber line
o Exponent - left operand raized o the power of nght sty (& w the
power)

ii) Comparison or Relational Operators

Comparison operators are used to compare values. It either returns True or

False according to the condition.

Operator Meaning Example
= Greater that - True if l=f operand is greater than the right Y
= Less that - True if lefi operand is less than the might ESY
== Equal to - True if both operands are squal E=Y
= Mot eguoal to - Trae if operands are not squal %=y
== Greater than or equal to - Troe if l=ft operand is greater than or equal |z =y
bo the right
== Less than or equal to - Troe if left operand is less than or equal to the | x <=y
right
Example
x=5
y=7

print('x >y is',x>y)
print('x <y is',x<y)
print('x ==y is',x==y)
print('x =y is',x!=y)
print('’x >=vy is',x>=y)
print('x <=y is',x<=y)

When you run the program, the output will be:

X >y is False

X <y is True
x ==Yy is False
x1=vyis True

x >=y is False
x <=y is True

iii)Logical Operators
e Logical operators are the and, or, not operators.

Operator Meaning Example
and True if both the operands are e xand y
ar True if esther of the operands is ue X0y
oot Troe if operand is falze (complements the operand) | not x

Example

x = True

y = False

print('x and y is',x and y)
print(’x or y is',x or y)
print('not x is',not x)

When you run the program, the output will be:
x andy is False

xoryis True
not x is False

iv) Bitwise Operators
e Bitwise operators act on operands as if they were string of binary digits. It operates
bit by bit, hence the name.

For example, 2 is 10 in binary and 7 is 111.

Operator Meaning Example

& Bitwise AND % y =0 (000 000
| Bitwise OR % |y =14 (0000 1110
- Bitwizse NOT ~%=-11({1111 0101}

Hitwnse XU X" y=14 [l 1110)
= Bitwise right shift | x=>= 21 =12 (0000 0010)
e Bitwise left shift | == 2 =40 (0010 10007

Example

x=10

y=4

print('x& y='x&y)
print(x | y="x | y)
print('~x=',~x)

print('x A y="x " y)
print('x>> 2="x>> 2)
print('x<< 2=',x<< 2)

When you run the program, the output will be:
x&y=0

X|y=14

~x=-11

xNy=14

x>>2=2

x<< 2=40

v) Assignment Operators
e Assignment operators are used in Python to assign values to variables.
e a=10 assigns the value 10 on the right side to the variable a on the left.
e There are various compound operators in Python like a += 10 that adds to the
variable and later assigns the same. It is equivalentto a = a + 10.

Example | Equivatent to
=3 E=3

[]

=
|
n

*
]

i h [N [=1
i
g

I
[0 e I

¥ #
Ll a1

o
L

-] el
I

e I e
il s

s

=] m
-

L I

10

wnl 1l

o] F

L

A :ﬁ: ML

n

Bl A G GG Gl AL G A G
[£

A G GG G R G R ks
*
|T||ﬁ|
L] I
FA LA G A AR B A A A EA

1 R L
[N Ll

[p

vi) Special Operators
Python language offers some special type of operators like the identity operator or
the membership operator. They are described below with examples.

a) Identity Operators
e is and is not are the identity operators in Python. They are used to

check if two values (or variables) are located on the same part of the

memory.

e Two variables that are equal does not imply that they are identical.

Orperatar Afeaning Example
Is Tre if the operands are identical (Tefer fo the same object) % 1= Troe
i5 mot True if the operands are not idemtical (do Dot refer to the same | = 5 oot
object) T
Example
x1=7
y1=7

x2 = 'Welcome'
y2 ="'Welcome'
x3 =[1,2,3]

y3 =[1,2,3]
print(x1 is not y1)
print(x2 is y2)
print(x3 is y3)
When you run the program, the output will be:

False
True
False

b) Membership Operators
e in and in not are the membership operator.

e They are used to test whether a value or a variable is found in a
sequence (string, list, tuple, set and dictionary)

Operator Meaning Example

m True if value'variable &5 found m the saquence S5ImE

not m Imoe if valuesvarsable 15 not found 1n the sequence | 5 oot I %
Example

x = 'Python Programming'
print(‘Program' not in x)

print('Program’ in x)
print(‘program' in x)

When you run the program, the output will be:

False

True

False

e Here, ' Program 'is in x but ' program' is not present in x, since Python
is case sensitive

3.4.1 PRECEDENCE OF PYTHON OPERATORS
e The combination of values, variables, operators and function calls is termed as
an expression.
e Python interpreter can evaluate a valid expression.
e \When an expression contains more than one operator, the order of evaluation
depends on the Precedence of operations.

For example, multiplication has higher precedence than subtraction.
>>> 20 - 5*3
5

But we can change this order using parentheses () as it has higher precedence.
>>>(20-5)*3
45

e The operator precedence in Python are listed in the following table. It is in
descending order, upper group has higher

Operators Meaning
) Parentheses
ok Exponent
+x, -X, ~X Unary plus, Unary minus, Bitwise NOT
* 11, % Multiplication, Division, Floor division, Modulus

+_ - Addition, Subtraction

Bitwise shift operators
& Bitwise AND

M Bitwise XOR
Bitwise OR
=, |= = >= =< <= 15, 1s not, in_ not in | Comparisions, Identity, Membership operators
not Logical NOT
and Logical AND
or Logical OR

3.4.2 ASSOCIATIVITY OF PYTHON OPERATORS

e \We can see in the above table that more than one operator exists in the same group.

e These operators have the same precedence.

e \When two operators have the same precedence, associativity helps to determine
which the order of operations.

e Associativity is the order in which an expression is evaluated that has multiple
operator of the same precedence.

e Almost all the operators have left-to-right associativity.

For example, multiplication and floor division have the same precedence.
Hence, if both of them are present in an expression, left one is evaluates first.

>>>10*7//3

23
>>>10* (7/13)
20
>>> (10 * 7)/13
23

We can see that 10 * 7 // 3 is equivalent to (10 * 7)//3.
Exponent operator ** has right-to-left associativity in Python.
S>> 5 ** 9 #x 3

390625

>>> (5% 2) **3

15625

>>> 5 **(2 *3)

390625

We can see that 2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).

3.5 COMMENTS

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense, and it is often difficult to look at a piece of code and
figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing.

These notes are called comments, and they start with the # symbol:

compute Area of a triangle using Base and Height
area= (base*height)/2

In this case, the comment appears on a line by itself. You can also put comments at
the end of a line:

area= (base*height)/2 # Area of a triangle using Base and Height

Everything from the # to the end of the line is ignored—it has no effect on the
execution of the program.

Comments are most useful when they document non-obvious features of the code.

If we have comments that extend multiple lines, one way of doing it is to use hash (#)
in the beginning of each line. For example:

#This is a long comment

#and it extends

#to multiple lines

Another way of doing this is to use triple quotes, either ™ or "".
""This is also a
perfect example of
multi-line comments

4. ILLUSTRATIVE PROBLEMS
4.1 EXCHANGE THE VALUES OF TWO VARIABLES
e In python exchanging the values can be done in three ways
i) Using third variable
ii) Using tuple assignment method
iii) Using arithmetic operator
iv) Using bitwise operator

4.1.1 Using third variable

1 var1 = input("Enter value of variable1: ")
2 var2 = input("Enter value of variable2: ")
3 temp = var1

4 var1 = var2

5 var2 = temp

6 print("After swapping:")

7 print("First Variable =",var1,)

8 print("Second Variable=",var2,)

When you run the program, the output will be:

Enter value of variable1: 5
Enter value of variable2: 10
After swapping:

First Variable = 10

Second Variable= 5

4.1.2 Using tuple assighment
e |n this method instead of using the line number 3,4 and 5 we can just code
vari,var2=var2,var1

4.1.3 Using arithmetic operator
4.1.3.1 Addition and Subtraction

e In this method in the above program instead of line number 3,4,5 use the following
code

X +
X
X

X < X
1

y
y
y

4.1.3.2 Multiplication and Division
e In this method in the above program instead of line number 3,4,5 use the following

code
X=X*y
y=xly

x=xly

4.1.4 Using Bitwise Operator
e |[f the variables are integers then we can perform swapping with the help of bitwise
XOR operator.
e In order to do this in the above program instead of line number 3,4,5 use the
following code

X < X
1

xX X X

> > >

< <K <

4.2 CIRCULATE THE VALUE OF N VARIABLES
e Problem of circulating a Python list by an arbitrary number of items to the right or left
can be easily performed by List slicing operator.

1L f2 J3 J4 Js5 f6 J7 1
e Consider the above list Figure 2.4.a; circulation of the above list by n position can be
easily achieved by slicing the array into two and concatenating them.
e Slicing is done as nth element to end element + beginning element to n-1th element.
Suppose n=2 means, given list is rotated 2 positions towards left side

3 |4

(L]

s1Z] |2

e Suppose n= - 2 means, given list is rotated 2 position towards right side

6 17 11 12 13 14 |3

e So the simple function to perform this circulation operation is

def circulate(list, n):

return list[n:] + list[:n]

>>> circulate([1,2,3,4,5,6,7], 2)
[3,4,5,6,7,1, 2]

>>> circulate([1,2,3,4,5,6,7], -2)
[6,7,1,2,3,4,5]

4.3 DISTANCE BETWEEN TWO POINT

Import math

p1=[4,0]

p2=[6,6]
distance=math.sqrt((p1[0]-p2[0]**2)+p1[1]-p2[1]**2))
print(distance)

Output
Distance between two points
6.3245532

