
rut
hc
sic
e.b

log
sp
ot.
co
m

UNIT II
 DATA TYPES, EXPRESSIONS, STATEMENTS

1.​ Python interpreter and interactive mode,debugging;
2.​ Values and types: int, float, boolean, string, and list;
3.​ Variables

3.1 Expressions
3.2 Statements
3.3 Tuple assignment
3.4 Precedence of operators
3.5 Comments

4.​ Illustrative programs:
4.1 Exchange the values of two variables
4.2 Circulate the values of n variables
4.3 Distance between two points.

1.​ Python interpreter

●​ Python is a cross-platform programming language, meaning, it runs on
multiple platforms like Windows, Mac OS X, Linux, Unix

●​ It is free and open source.

Starting the Interpreter
●​ The Python interpreter is a program that reads and executes Python code.
●​ After installation, the python interpreter lives in the installed directory.
●​ Now there are two ways to start Python.

1.​ Interactive mode
2.​ Script Mode

Interactive mode

●​ Typing python in the command line will invoke the interpreter in interactive
mode.
>>> - is a prompt that indicates that the interpreter is ready for you to enter
code.
>>> 5 + 4
9

●​ This prompt can be used as a calculator. To exit this mode type exit() or quit()
and press enter.

Script Mode

●​ This mode is used to execute Python program written in a file.
●​ Such a file is called a script.
●​ Python scripts have the extension .py
●​ For example: helloWorld.py
●​ To execute this file in script mode we simply write python helloWorld.py at the

command prompt.

rut
hc
sic
e.b

log
sp
ot.
co
m

bug: An error in a program.
debugging: The process of finding and removing any of the three kinds of
programming errors.
syntax: The structure of a program.
syntax error: An error in a program that makes it impossible to parse (and therefore
impossible to interpret).
exception: An error that is detected while the program is running.
semantics: The meaning of a program.

2. Values and types

●​ A value is one of the basic things a program.
●​ There are different values integers, float and strings.
●​ The numbers with a decimal point belong to a type called float.
●​ The values written in quotes will be considered as string, even it’s an integer.
●​ If type of value is not known it can be interpreted as

Eg: >>> type('Hello, World!')
<type 'str'>
>>> type(17)
<type 'int'>
>>> type('17')
<type 'str'>
>>> type('3.2')
<type 'str'>

Standard Data Types

●​ Python has various standard data types that are used to define the operations
possible on them and the storage method for each of them.

●​ Python has five standard data types −
❖​ Numbers
❖​ String
❖​ List
❖​ Tuple
❖​ Dictionary

Python Numbers

●​ Number data types store numeric values.
●​ Number objects are created when you assign a value to them.
●​ For example –

var1 =1
var2 =10

●​ You can also delete the reference to a number object by using the del statement.
●​ The syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

Python Strings

●​ Strings in Python are identified as a contiguous set of characters represented in the
quotation marks.

●​ Python allows for either pairs of single or double quotes.

rut
hc
sic
e.b

log
sp
ot.
co
m

●​ Subsets of strings can be taken using the slice operator ([] and [:]) with indexes
starting at 0 in the beginning of the string and working their way from -1 at the end.

●​ The plus (+) sign is the string concatenation operator and the asterisk (*) is the
repetition operator.

●​ For example –
str = 'Python Programming' print str # Prints complete string
print str[0] # Prints first character of the string
print str[-1] # Prints last character of the string
print str[2:5] # Prints characters starting from 3rd to 5th
print str[2:] # Prints string starting from 3rd character
print str * 2 # Prints string two times
print str + " Course" # Prints concatenated string

This will produce the following result –

Python Programming
P
g
tho
thon Programmin
Python ProgrammingPython Programming
Python Programming Course

Python Lists
●​ Lists are the most versatile of Python's compound data types.
●​ A list contains items separated by commas and enclosed within square brackets ([]).
●​ To some extent, lists are similar to arrays in C.
●​ One difference between them is that all the items belonging to a list can be of

different data type.
●​ The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list and working their way to end -1.
●​ The plus (+) sign is the list concatenation operator, and the asterisk (*) is the

repetition operator.
●​ For example −

list = ['Hai', 123 , 1.75, 'vinu', 100.25]
smalllist = [251, 'vinu']
print list
print list[0]
print list[-1]
print list[1:3]
print list[2:]
print smalllist * 2
print list + smalllist

This produces the following result –
['Hai', 123, 1.75, 'vinu', 100.25]
Hai
100.25

rut
hc
sic
e.b

log
sp
ot.
co
m

[123, 1.75]
[1.75, 'vinu', 100.25]

[251, 'vinu', 251, 'vinu']
['Hai', 123, 1.75, 'vinu', 100.25, 251, 'vinu']

Python Boolean

●​ A Boolean type was added to Python 2.3.
●​ Two new constants were added to the __builtin__ module,
●​ True and False.
●​ True and False are simply set to integer values of 1 and 0 and aren't a different type.

>>>bool(1)
True
>>>bool(0)
False
>>> False + 1
1
>>> False * 85
0
>>> True * 85
85
>>>True+True
2
>>>False+False
0

3 VARIABLES

●​ A variable is a name that refers to a value.
●​ Variable reserved memory locations to store values.
●​ This means that when you create a variable you reserve some space in memory.
●​ Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory

Assignment Statements

●​ An assignment statement creates a new variable and gives it a value:
>>>message = 'Introducing Python Variable'
>>>num = 15
>>>radius = 5.4

●​ This example makes three assignments.
●​ The first assigns a string to a new variable named message;
●​ the second gives the integer 15 to num;
●​ the third assigns floating point value 5.4 to variable radius.

Variable Names

●​ Programmers generally choose names for their variables that are meaningful
●​ The Rules

❖​ Variables names must start with a letter or an underscore,such as:
_mark
mark_

rut
hc
sic
e.b

log
sp
ot.
co
m

❖​ The remainder of your variable name may consist of letters, numbers and
underscores.
subject1
my2ndsubject
un_der_scores

❖​ Names are case sensitive.
case_sensitive, CASE_SENSITIVE, and Case_Sensitive are each a different
variable.

❖​ Can be any (reasonable) length
❖​ There are some reserved (KeyWords)words which you cannot use as a

variable name
●​ If you give a variable an illegal name, you get a syntax error:

>>>1book = 'python'
SyntaxError: invalid syntax
>>>more@ = 1000000
SyntaxError: invalid syntax
>>>class = 'Fundamentals of programming'
SyntaxError: invalid syntax

●​ 1book is illegal because it begins with a number.
●​ more@ is illegal because it contains an illegal character,
●​ class is illegal because it is a keyword.

Good Variable Name

●​ Choose meaningful name instead of short name.
●​ roll_no is better than rn.
●​ Maintain the length of a variable name.
●​ Roll_no_of_a_student is too long? Be consistent; roll_no or orRollNo
●​ Begin a variable name with an underscore(_) character for a special case.

3.1 EXPRESSIONS AND STATEMENTS

●​ An expression is a combination of values, variables, and operators.
●​ A value all by itself is considered an expression, and so is a variable, so the following

are all legal expressions:
>>> 50
50
>>> 10<5
False
>>> 50+20
70

●​ When you type an expression at the prompt, the interpreter evaluates it, which
means that it finds the value of the expression.

3.2 STATEMENT

●​ A statement is a unit of code that has an effect, like creating a variable or displaying
a value.
>>> n = 25
>>>print(n)

●​ The first line is an assignment statement that gives a value to n.

rut
hc
sic
e.b

log
sp
ot.
co
m

●​ The second line is a print statement that displays the value of n.
●​ When you type a statement, the interpreter executes it, which means that it does

whatever the statement says.
●​ In general, statements don’t have values.

Difference Between a Statement and an Expression

●​ A statement is a complete line of code that performs some action, while an
expression is any section of the code that evaluates to a value.

●​ Expressions can be combined ―horizontally‖ into larger expressions using
operators, while statements can only be combined ―vertically‖ by writing one after
another, or with block constructs.

●​ Every expression can be used as a statement, but most statements cannot be used
as expressions.

3.3 TUPLE ASSIGNMENT

●​ It is often useful to swap the values of two variables.
●​ With conventional assignments, you have to use a temporary variable.
●​ For example, to swap a and b:

>>>temp = a
>>> a = b
>>> b = temp
>>>a, b = b, a

●​ This is called tuple assignment
●​ The left side is a tuple of variables; the right side is a tuple of expressions.
●​ Each value is assigned to its respective variable.
●​ All the expressions on the right side are evaluated before any of the assignments.
●​ The number of variables on the left and the number of values on the right have to be

the same.
>>>a, b = 1, 2, 3
ValueError: too many values to unpack

●​ More generally, the right side can be any kind of sequence (string, list or tuple).
●​ For example, to split an email address into a user name and a domain, you could

write:
>>>addr = 'monty@python.org'
>>>uname, domain = addr.split('@')
The return value from split is a list with two elements; the first element is assigned to
uname, the second to domain.
>>>uname 'monty'
>>>domain 'python.org'

3.4 OPERATORS

●​ Operators are special symbols in Python that carry out computation.
●​ The value that the operator operates on is called the operand.

For example:
>>>10+5
15

●​ Here, + is the operator that performs addition.

rut
hc
sic
e.b

log
sp
ot.
co
m

●​ 10 and 5 are the operands and 15 is the output of the operation.
●​ Python has a number of operators which are classified below.

1)​ Arithmetic operators
2)​ Comparison (Relational) operators
3)​ Logical (Boolean) operators
4)​ Bitwise operators
5)​ Assignment operators
6)​ Special operators

i) Arithmetic Operators

●​ Arithmetic operators are used to perform mathematical operations like
addition, subtraction, multiplication etc.
Example
x = 7
y = 3
print('x + y =',x+y)
print('x - y =',x-y)
print('x * y =',x*y)
print('x / y =',x/y)
print('x // y =',x//y)
print('x % y =',x%y)
print('x ** y =',x**y)

When you run the program, the output will be:
x + y = 10
x - y = 4
x * y = 21
x / y = 2.3333333333333335
x // y = 2
x % y = 1
x ** y = 343

ii) Comparison or Relational Operators

●​ Comparison operators are used to compare values. It either returns True or

False according to the condition.

rut
hc
sic
e.b

log
sp
ot.
co
m

Example
x = 5
y = 7
print('x > y is',x>y)
print('x < y is',x<y)
print('x == y is',x==y)
print('x != y is',x!=y)
print('x >= y is',x>=y)
print('x <= y is',x<=y)

When you run the program, the output will be:

x >y is False
x <y is True
x == y is False
x != y is True
x >= y is False
x <= y is True

iii)Logical Operators

●​ Logical operators are the and, or, not operators.

Example
x = True
y = False
print('x and y is',x and y)
print('x or y is',x or y)
print('not x is',not x)

When you run the program, the output will be:

x and y is False
x or y is True
not x is False

rut
hc
sic
e.b

log
sp
ot.
co
m

iv) Bitwise Operators
●​ Bitwise operators act on operands as if they were string of binary digits. It operates

bit by bit, hence the name.

For example, 2 is 10 in binary and 7 is 111.

Example

x=10
y=4
print('x& y=',x& y)
print('x | y=',x | y)
print('~x=',~x)
print('x ^ y=',x ^ y)
print('x>> 2=',x>> 2)
print('x<< 2=',x<< 2)

When you run the program, the output will be:
x& y= 0
x | y= 14
~x= -11
x ^ y= 14
x>> 2= 2
x<< 2= 40

v) Assignment Operators

●​ Assignment operators are used in Python to assign values to variables.
●​ a=10 assigns the value 10 on the right side to the variable a on the left.
●​ There are various compound operators in Python like a += 10 that adds to the

variable and later assigns the same. It is equivalent to a = a + 10.

rut
hc
sic
e.b

log
sp
ot.
co
m

vi) Special Operators
●​ Python language offers some special type of operators like the identity operator or

the membership operator. They are described below with examples.

a)​ Identity Operators
●​ is and is not are the identity operators in Python. They are used to

check if two values (or variables) are located on the same part of the
memory.

●​ Two variables that are equal does not imply that they are identical.

Example

x1 = 7
y1 = 7
x2 = 'Welcome'
y2 = 'Welcome'
x3 = [1,2,3]
y3 = [1,2,3]
print(x1 is not y1)
print(x2 is y2)
print(x3 is y3)
When you run the program, the output will be:
False
True
False

b)​ Membership Operators
●​ in and in not are the membership operator.
●​ They are used to test whether a value or a variable is found in a

sequence (string, list, tuple, set and dictionary)

​ ​ Example

x = 'Python Programming'
print('Program' not in x)
print('Program' in x)
print('program' in x)
When you run the program, the output will be:
False

rut
hc
sic
e.b

log
sp
ot.
co
m

True
False
●​ Here, ' Program ' is in x but ' program' is not present in x, since Python

is case sensitive

3.4.1 PRECEDENCE OF PYTHON OPERATORS
●​ The combination of values, variables, operators and function calls is termed as

an expression.
●​ Python interpreter can evaluate a valid expression.
●​ When an expression contains more than one operator, the order of evaluation

depends on the Precedence of operations.

For example, multiplication has higher precedence than subtraction.
>>> 20 – 5*3
5

But we can change this order using parentheses () as it has higher precedence.
>>> (20 - 5) *3
45

●​ The operator precedence in Python are listed in the following table. It is in
descending order, upper group has higher

3.4.2 ASSOCIATIVITY OF PYTHON OPERATORS

●​ We can see in the above table that more than one operator exists in the same group.
●​ These operators have the same precedence.
●​ When two operators have the same precedence, associativity helps to determine

which the order of operations.
●​ Associativity is the order in which an expression is evaluated that has multiple

operator of the same precedence.
●​ Almost all the operators have left-to-right associativity.

For example, multiplication and floor division have the same precedence.
Hence, if both of them are present in an expression, left one is evaluates first.

rut
hc
sic
e.b

log
sp
ot.
co
m

>>> 10 * 7 // 3
23
>>> 10 * (7//3)
20
>>> (10 * 7)//3
23

We can see that 10 * 7 // 3 is equivalent to (10 * 7)//3.
Exponent operator ** has right-to-left associativity in Python.
>>> 5 ** 2 ** 3
390625
>>> (5** 2) **3
15625
>>> 5 **(2 **3)
390625
We can see that 2 ** 3 ** 2 is equivalent to 2 ** (3 ** 2).

3.5 COMMENTS
●​ As programs get bigger and more complicated, they get more difficult to read.
●​ Formal languages are dense, and it is often difficult to look at a piece of code and

figure out what it is doing, or why.
●​ For this reason, it is a good idea to add notes to your programs to explain in natural

language what the program is doing.
●​ These notes are called comments, and they start with the # symbol:

compute Area of a triangle using Base and Height
area= (base*height)/2

●​ In this case, the comment appears on a line by itself. You can also put comments at
the end of a line:

area= (base*height)/2 # Area of a triangle using Base and Height

●​ Everything from the # to the end of the line is ignored—it has no effect on the
execution of the program.

●​ Comments are most useful when they document non-obvious features of the code.
●​ If we have comments that extend multiple lines, one way of doing it is to use hash (#)

in the beginning of each line. For example:

#This is a long comment
#and it extends
#to multiple lines

●​ Another way of doing this is to use triple quotes, either ''' or """.
"""This is also a
perfect example of
multi-line comments"""

rut
hc
sic
e.b

log
sp
ot.
co
m

4. ILLUSTRATIVE PROBLEMS
4.1 EXCHANGE THE VALUES OF TWO VARIABLES

●​ In python exchanging the values can be done in three ways
​ i) Using third variable
​ ii) Using tuple assignment method
​ iii) Using arithmetic operator
​ iv) Using bitwise operator

 4.1.1 Using third variable
1 var1 = input("Enter value of variable1: ")
2 var2 = input("Enter value of variable2: ")
3 temp = var1
4 var1 = var2
5 var2 = temp
6 print("After swapping:")
7 print("First Variable =",var1,)
8 print("Second Variable=",var2,)

When you run the program, the output will be:

Enter value of variable1: 5
Enter value of variable2: 10
After swapping:
First Variable = 10
Second Variable= 5

4.1.2 Using tuple assignment

●​ In this method instead of using the line number 3,4 and 5 we can just code
var1,var2=var2,var1

4.1.3 Using arithmetic operator

4.1.3.1 Addition and Subtraction

●​ In this method in the above program instead of line number 3,4,5 use the following
code

x = x + y
y = x - y
x = x - y

4.1.3.2 Multiplication and Division

●​ In this method in the above program instead of line number 3,4,5 use the following
code

x = x * y
y = x / y
x = x / y

rut
hc
sic
e.b

log
sp
ot.
co
m

4.1.4 Using Bitwise Operator
●​ If the variables are integers then we can perform swapping with the help of bitwise

XOR operator.
●​ In order to do this in the above program instead of line number 3,4,5 use the

following code

x = x ^ y
y = x ^ y
x = x ^ y

4.2 CIRCULATE THE VALUE OF N VARIABLES

●​ Problem of circulating a Python list by an arbitrary number of items to the right or left
can be easily performed by List slicing operator.

●​ Consider the above list Figure 2.4.a; circulation of the above list by n position can be

easily achieved by slicing the array into two and concatenating them.
●​ Slicing is done as nth element to end element + beginning element to n-1th element.

Suppose n=2 means, given list is rotated 2 positions towards left side

●​ Suppose n= - 2 means, given list is rotated 2 position towards right side

●​ So the simple function to perform this circulation operation is

def circulate(list, n):
return list[n:] + list[:n]
>>> circulate([1,2,3,4,5,6,7], 2)
[3, 4, 5, 6, 7, 1, 2]
>>> circulate([1,2,3,4,5,6,7], -2)
[6, 7, 1, 2, 3, 4, 5]

4.3 DISTANCE BETWEEN TWO POINT

Import math
p1=[4,0]
p2=[6,6]
distance=math.sqrt((p1[0]-p2[0]**2)+p1[1]-p2[1]**2))
print(distance)

Output
Distance between two points
6.3245532

