Arguments for CNI Long lived Daemon (gRPC)

e Pros

o

The ability to apply network related configuration at the node level in addition to
pod level configuration (e.g. ip-masg-agent)
Storing and sharing state for clean-up purposes. Today this is done for each
plugin which means each plugin must roll its own even though the state could be
shared causing duplication.
Plugin chaining is brittle and difficult to take actions on failure, no self-healing.
For example, delete operations that fail to clean up, or retries due to some
temporary failure.
Protos explicitly define the interface.
It allows flexibility to change the network configuration dynamically.

m E.g. growing/shrinking network subnet mask lengths
Changes to the plugin are less likely to require changes to the client side and
decouple the implementation with the specification.
Plugin chaining can be more flexible allowing circular dependencies or any-order
deletion. Today deletion is implied to be the reverse of the add operation
chaining order.
Solve bootstrapping the CNI configuration, since that can be coupled with the
long running daemon instead of a separate process that just does this operation.
Easier plugin installation, no writable FS required
Easier distribution of secrets to drivers (through existing orchestration
mechanisms like kube secrets)
Consistency with evolving CSI spec and Kubernetes device driver spec, similar in
form to Docker drivers
More honest about the overhead incurred running drivers
More transparent to orchestration systems
Most non-trivial network plugins already have a long-running daemon anyway
(eg, to watch for NetworkPolicy changes)

Must have a babysitter process to ensure the daemon stays up
Probably not identical to Docker drivers
More persistent overhead



