
Arguments for CNI Long lived Daemon (gRPC)
●​ Pros

○​ The ability to apply network related configuration at the node level in addition to
pod level configuration (e.g. ip-masq-agent)

○​ Storing and sharing state for clean-up purposes. Today this is done for each
plugin which means each plugin must roll its own even though the state could be
shared causing duplication.

○​ Plugin chaining is brittle and difficult to take actions on failure, no self-healing.
For example, delete operations that fail to clean up, or retries due to some
temporary failure.

○​ Protos explicitly define the interface.
○​ It allows flexibility to change the network configuration dynamically.

■​ E.g. growing/shrinking network subnet mask lengths
○​ Changes to the plugin are less likely to require changes to the client side and

decouple the implementation with the specification.
○​ Plugin chaining can be more flexible allowing circular dependencies or any-order

deletion. Today deletion is implied to be the reverse of the add operation
chaining order.

○​ Solve bootstrapping the CNI configuration, since that can be coupled with the
long running daemon instead of a separate process that just does this operation.

○​ Easier plugin installation, no writable FS required
○​ Easier distribution of secrets to drivers (through existing orchestration

mechanisms like kube secrets)
○​ Consistency with evolving CSI spec and Kubernetes device driver spec, similar in

form to Docker drivers
○​ More honest about the overhead incurred running drivers
○​ More transparent to orchestration systems
○​ Most non-trivial network plugins already have a long-running daemon anyway

(eg, to watch for NetworkPolicy changes)
●​ Cons

○​ Must have a babysitter process to ensure the daemon stays up
○​ Probably not identical to Docker drivers
○​ More persistent overhead

