
Documentation

Dev Team Documentation (‘25-’26)

1. Overview...2

1.1 Quick Links.. 2
1.2 General Contribution Guidelines..2
1.3 Other..2

2. ACM Website..3
2.1 Tech Stack... 3
2.2 Running the Project Locally... 3
2.3 Key Folders..3

3. Membership Portal.. 4
3.1 Tech Stack:.. 4
3.2 Running Project Locally:.. 4
3.3 Frontend.. 4

3.3.1 Key Terms...5
3.3.2 General Logic..5

3.4 Backend...5
3.4.1 Key Terms...6
3.4.2 General Logic...6

3.5 DevOps..6
3.5.1 Docker Logic...6
3.5.2 General Logic..7

4. The Nitty Gritty (Production & Maintenance)..10
4.1 SSH, Server Access, Important Commands..10
4.2 Updating Production.. 10
4.3 Deploying... 11
4.4 Creating a New Instance..11
4.5 Adding a New Event as Admin User..11
4.6 Certificates...12
4.7 Restoring/Backing Up Database..13
4.8 Extracting Database Data to Local Machine..13
4.9 Resetting the Membership Portal.. 14
4.10 Reset Portal for the Year..14

5. Discord Bot:... 15
Verification Bot Github..15
6. ACM Design Requests.. 16

1. Overview
This document serves as the central technical reference for ACM Development Team projects,
specifically the website and membership portal. It explains the architecture, setup, deployment, and
maintenance workflows to help new and current members onboard quickly.

1.1 Quick Links

●​ Website: https://www.uclaacm.com/ ​
○​ Repo: https://github.com/uclaacm/website

●​ Subdomain: http://acm.cs.ucla.edu/
●​ Membership Portal: https://members.uclaacm.com/login
●​ Password Manager: vault.bitwarden.com/

1.2 General Contribution Guidelines
Work on feature branches

Follow commit message conventions.

Submit pull requests for review before merging into master or any branch

1.3 Other
See passwork.me vault for access to the following

●​ Jenkins
●​ EC2, AWS account (note: instances will cost ~$35/month)
●​ Namecheap
●​ Netlify

https://www.uclaacm.com/
https://github.com/uclaacm/website
http://acm.cs.ucla.edu/
https://members.uclaacm.com/login
http://vault.bitwarden.com/

2. ACM Website
The ACM Website is the central hub for our chapter, displaying committees, initiatives, events, about,

and many more. We use Google sheets as our content management system (CMS), allowing

non-developers to easily update website content without touching code. Please read the README

file in ACM Website to get started. It has all the key information you need, including how to run the

project locally and how to contribute to the project.

2.1 Tech Stack
●​ React → Most widely-known Javascript library to build the website

●​ Next.js → React framework for better performance, SEO, and backend functionalities

●​ Netlify → Hosts and deploys the website. Automatically updates the live site whenever new

commits are pushed to the master branch of repo

●​ ESLint + Stylelint → Tools that automatically check the code quality and formatting

●​ Design → All visual designs are created by the ACM Design team

2.2 Running the Project Locally

git clone https://github.com/uclaacm/website.git ​
npm install​
npm run dev

2.3 Key Folders
/components → Reusable UI componens

/data → pre-generated JSON and small content data used by pages/components

/pages → Next.js routes + pages; controls what content is rendered and how it's fetched

(SSG/SSR))

/public → Static assets (images, files, favicon) served directly at the site root.

/scripts → Build-time helpers that fetch/transform content (e.g., Google Sheets => JSON).

/styles → SCSS/CSS modules and global styles used by components and pages

https://github.com/uclaacm/website
https://react.dev/
http://next.js
https://app.netlify.com/teams/acm-at-ucla/overview
https://github.com/uclaacm/website/tree/master
https://eslint.org/
https://stylelint.io/

3. Membership Portal
The membership portal is split into three repositories:

1.​ Frontend Repo (membership-portal-ui)
2.​ Backend Repo (membership-portal)
3.​ Deployment Repo (membership-portal-deployment)

a.​ This repo is private, you have to be added to UCLA ACM group. Ask Dev Directory for
access

Why? Partially, in industry you will often see separate frontend/backend repos, especially when
frontend & backend teams are separate. But more importantly, because it’s been that way since 2017.
Trying to merge or restructure them is technically possible, but you’re probably better off not touching
it. If it works then don’t touch it!

3.1 Tech Stack:

●​ React → Most widely-known Javascript library to build the website

●​ Node.JS → Runtime environment utilizing JavaScript as its programming language
●​ Express → Popular web framework known for simplifying server-side development
●​ PostgreSQL → Database
●​ AWS → Acts as the storage and deployment backbone
●​ Docker → Containerization
●​ ESLint + Stylelint → Tools that automatically check the code quality and formatting

3.2 Running Project Locally:

Open Docker Desktop and wait until it’s fully running. Ask officer for .env file info if you don’t
currently have one.

1.​ git clone https://github.com/uclaacm/membership-portal-deployment.git
2.​ git clone https://github.com/uclaacm/membership-portal.git
3.​ git clone https://github.com/uclaacm/membership-portal-ui.git
4.​ cd membership-portal-deployment
5.​ cd dev
6.​ docker compose build
7.​ docker compose up -d

3.3 Frontend
The frontend is responsible for handling what users see and interact with.

●​ Manages the app’s visual components and user interactions.
●​ Connects the app state to UI components via containers.

https://github.com/uclaacm/membership-portal-ui
https://github.com/uclaacm/membership-portal
https://github.com/uclaacm/membership-portal-deployment
https://react.dev/
https://nodejs.org/en/about
https://expressjs.com/
https://www.postgresql.org/
https://aws.amazon.com/
https://www.docker.com/
https://eslint.org/
https://stylelint.io/
https://github.com/uclaacm/membership-portal-deployment.git
https://github.com/uclaacm/membership-portal.git
https://github.com/uclaacm/membership-portal-ui.git

●​ Updates state using reducers, actions, and dispatch

3.3.1 Key Terms

●​ Containers: Connect the app’s data to UI components to always display the intended
information and handle user logic

●​ State Management: Controls how data changes and updates across the app
●​ Redux: JavaScript library primarily used for managing and centralizing application state

○​ Store: A central object that holds the entire global state of your application. It acts
as the single source of truth for all application data, making it accessible to any
component that needs it

●​ Jenkins: A CI/CD tool used for automating tasks like building, testing, and deploying
code

3.3.2 General Logic

●​ Redux enforces a strict unidirectional data flow, ensuring state changes are predictable
and traceable. This flow involves:

○​ Actions: Plain JavaScript objects that describe what happened (e.g., user clicked
a button, data fetched).

○​ Reducers: Functions that take the current state and an action, then return a new
state based on the action. Reducers never directly modify the existing state.

○​ Dispatch: Functions used to send actions to the store, triggering the reducer to
update the state.

○​ In short, When something happens in the app (like a user clicks a button), an
action is sent to dispatch, which calls the reducer to create a new version of
the state

●​ index.js combines all the reducers into one main reducer and this combined reducer is
what dispatch communicates with when updating state.

●​ config.js tells the frontend how to send requests to backend services and what
environment settings to use (dev, prod, etc)

●​ Jenkins
○​ See passwork.me vault for access
○​ If stuff takes forever to build, try making another temp commit to branch

3.4 Backend
The backend is responsible for handling requests, managing data, and connecting the frontend to the
database.

●​ Processes requests from the frontend.
●​ Manages database interactions and protects against common attacks.
●​ Provides API endpoints for the frontend to fetch or update data.

Backend endpoints and documentation at wiki

https://github.com/uclaacm/membership-portal/wiki

3.4.1 Key Terms
●​ Middleware: A software that acts as a bridge, connecting disparate applications,

databases, and operating systems to enable them to communicate and exchange data.
●​ PostgreSQL: A relational database with an ORM (Object-Relational-Mapper). This lets

developers write JavaScript-like syntax to interact with the database instead of raw SQL.

3.4.2 General Logic

●​ Index.js handles most of the server setup
○​ Enables local requests: Lets your computer (localhost) talk to the server.
○​ Adds unique IDs: Every incoming request gets its own ID so it’s easy to track.
○​ Set up logging middleware: A function that runs in the middle of each request to

log what’s happening.
○​ Defines routes: Uses server.use('/app/api') to direct traffic to the main API routes.
○​ Handles errors: If something breaks, the error middleware catches it and passes

it to the next handler.
○​ All the /app/api routes are well-documented for easy reference.

●​ Database
○​ Security: Protected against common database attacks.
○​ Transactions: The transactionNamespace handles multi-step operations safely.
○​ Prototype methods: Functions like User.findUser are defined on the model’s

prototype, meaning every user instance automatically has access to them.

3.5 Database Structure

●​ There are 7 tables within the Postgres Database

To view the contents of any table:

docker exec -it dev-postgres-1 /bin/bash​
This enters the postgres docker container​
psql -U postgres​
This brings you into the postgres instance​

\dt​
This lists all of the tables in the database​
SELECT * FROM users;​
This lists everything in the users table​
/d users​
This lists the structure of the users table

Users:

ID UUID Email Access Type State First
Nam

e

Last
Name

Pictu
re

Ye
ar

Major Poin
ts

Last
Login
(UTC)

Create
d At

(UTC)

Updated At
(UTC)

1 c272daba-7
353-4fff-9af
b-50c81720
d1be

dylon@g.ucla.edu STANDARD ACTIV
E

Dylo
n

Tjanaka — 3 Comput
er
Science

9001 2025-1
1-07
00:49:3
7

2025-1
1-07
00:49:3
7

2025-11-07
00:49:37

2 b4b5590e-2
b5b-4866-a
8ba-a3491ff
2fc31

acm@g.ucla.edu SUPERADMIN ACTIV
E

ACM chapter at
UCLA

— 5 Comput
er
Science

0 2025-1
1-07
00:49:3
7

2025-1
1-07
00:49:3
7

2025-11-07
00:49:37

3 3c40326c-0
1bc-470f-8ff
1-4b9975f3
7db1

admin@g.ucla.edu ADMIN ACTIV
E

Nikhi
l

Kansal — 2 Comput
er
Science

0 2025-1
1-07
00:49:3
7

2025-1
1-07
00:49:3
7

2025-11-07
00:49:37

Column Type Modifiers / Default Description

id integer NOT NULL DEFAULT
nextval('users_id_seq'::regclass)

Primary key
(auto-incremented).

uuid uuid — Universally unique user
identifier.

email varchar(255) NOT NULL, UNIQUE User’s email address.

accessType enum_users_accessType DEFAULT 'STANDARD' User access level — e.g.,
STANDARD, ADMIN, or
SUPERADMIN.

state enum_users_state DEFAULT 'PENDING' Account state — e.g.,
PENDING, ACTIVE,
SUSPENDED.

firstName varchar(255) NOT NULL User’s first name.

lastName varchar(255) NOT NULL User’s last name.

picture varchar(255) — URL or file path to user’s
profile picture.

year integer NOT NULL User’s academic year
(e.g., 1, 2, 3, 4, 5).

major varchar(255) NOT NULL User’s declared major.

points integer DEFAULT 0 Gamified or participation
points.

lastLogin timestamp with time zone — Most recent login
timestamp.

createdAt timestamp with time zone NOT NULL Record creation
timestamp.

updatedAt timestamp with time zone NOT NULL Record last updated
timestamp.

Indexes:
 "users_pkey" PRIMARY KEY, btree (id)
 "users_email" UNIQUE, btree (email)
 "users_email_key" UNIQUE CONSTRAINT, btree (email)
 "users_uuid" UNIQUE, btree (uuid)
 "user_points_btree_index" btree (points, points DESC)

Activity

i
d

uuid user type descriptio
n

pointsEarne
d

date public createdAt updatedAt

1 93baae59-49d
e-4c4f-bc25-73
7cbcd5e097

2506a817-7d2
f-4b81-bf26-c
30b3d3353ef

ACCOUNT_CREATE 0 2025-11-07
00:49:53.946+00

t 2025-11-07
00:49:53.946+
00

2025-11-07
00:49:53.946+00

2 9965137d-3a7
d-45b6-a514-0
218504aa691

2506a817-7d2
f-4b81-bf26-c
30b3d3353ef

ACCOUNT_LOGIN 0 2025-11-07
00:49:53.954+00

 2025-11-07
00:49:53.954+
00

2025-11-07
00:49:53.954+00

3 60052aae-641
8-4117-9de3-3
8a290697b88

2506a817-7d2
f-4b81-bf26-c
30b3d3353ef

ACCOUNT_ACTIVAT
E

Registered
- added
year and
major

0 2025-11-07
00:52:13.18+00

 2025-11-07
00:52:13.18+0
0

2025-11-07
00:52:13.18+00

3.5 DevOps
DevOps is responsible for building, deploying, and maintaining the application environment.

●​ Compiles frontend code into browser-ready files using Webpack.
●​ Manages server setup, Docker containers, and Nginx configuration.

3.5.1 Docker Logic
Key Concepts:

●​ Dockerfile: A script that defines how to build a Docker image.
●​ Docker Image: A packaged version of an app with all its dependencies.
●​ Docker Container: A running instance of a Docker image in an isolated environment.
●​ DevOps: The practice of automating and streamlining software build, test, and deployment.

●​ Jenkins: A tool that automates CI/CD pipelines, often using Docker.
●​ Registry (ECR, Docker Hub): A storage place for Docker images, so they can be deployed

anywhere

Docker Flow

●​ Developers write a Dockerfile to define how their app should be built. This file creates a
Docker image, which contains everything the app needs to run. When executed, the image
becomes a Docker container, an isolated environment running the app. In a DevOps
workflow, tools like Jenkins automate this process—building the image, running tests in
containers, and deploying updated versions to production.

Development-to-Deployment Flow

●​ Code push triggers Jenkins: Jenkins pulls the latest code, runs linting/tests, and executes build
scripts

●​ Build & publish images: Docker images are built, tagged, and pushed to a registry (ECR, Docker
Hub, etc.) for later deployment.

●​ Deployment / orchestration:
○​ Local dev → Docker Compose spins up multiple containers together
○​ Staging/production → Deployment scripts pull images from the registry and run

containers with environment variables and secrets.
●​ Runtime & operations: Containers expose ports (e.g., 8080/8000), connect to databases

(like PostgreSQL), and are monitored through logs, health checks, and metrics. Rollbacks or
redeployments are triggered automatically if issues occur

In short:
Developer pushes code → Jenkins checks & builds → Docker images are published → Deployment
scripts start containers → Monitoring ensures the app runs smoothly

3.5.2 General Logic
Docker is the core of our containerization, but General Logic shows how all tools and commands work
together from development to deployment.

Key Concepts

●​ Webpack: A build tool that compiles all the React source code into files that browsers can
understand. It bundles JavaScript, CSS, and other assets together for efficiency.

●​ Nginx: Powerful, open-source web server, reverse proxy, load balancer, and HTTP cache. It
also handles routing, like sending /app requests to the backend.

○​ Reverse Proxy: A server or “middle layer between users and internal server” that
receives client requests and forwards them to one or more backend servers. This
setup allows you to load balance traffic, increase security by hiding the origin servers,
and serve multiple applications from a single IP address

●​ Alpine image: Lightweight Linux base image used for final Docker container to reduce size

●​ Nginx.conf: Configuration file that routes API requests (e.g., /app) to the backend while serving
frontend files.

●​ Environment Variables / Secrets: Configuration and credentials provided to containers so they
know how to connect to databases or APIs.

●​ Make Commands: Shortcuts for running common tasks (like building, deploying, or logging
into servers)

○​ make dev → Runs the app in development mode (keeps files in memory).
○​ make ssh → Opens a secure terminal connection to the AWS EC2 server.
○​ make ecr-login → Logs into AWS ECR (Elastic Container Registry) to push/pull Docker

images
○​ make build → Compiles both frontend and backend files and preps them for

deployment
○​ make build-static → Compiles frontend code into static files and starts Nginx to

serve them

How Everything Ties Together:

1.​ Local Development
●​ Run all services locally with Docker Compose:

○​ Backend: port 8080
○​ Frontend / Nginx: port 8000
○​ PostgreSQL: database

●​ Webpack compiles the React frontend so the browser can run it, and make dev keeps
files in memory for instant reloads.

●​ This allows you to test the full stack locally in a production-like environment.

2. Building & Packaging

●​ Dockerfile + make build package the app (frontend + backend) into a Docker container
with all dependencies.

●​ Make build-static compiles production-ready frontend files into
/var/www/membership/static and starts Nginx to serve them.

●​ The Alpine image keeps the container small by including only the compiled files.

3. Container Registry & Deployment

●​ Docker images are tagged and pushed to AWS ECR via make ecr-login and make
build.

●​ Deployment scripts or CI/CD pipelines pull the images from ECR and run containers
in staging or production with proper environment variables and secrets.

●​ Nginx ensures frontend requests are served directly, while backend API calls (/app) are
routed correctly.

4. Runtime & Operations

●​ Containers expose necessary ports (e.g., 8080 for backend, 8000 for frontend).
●​ They connect to services like PostgreSQL.
●​ Logs, health checks, and metrics are monitored to detect issues, and CI or infra scripts

can trigger rollbacks or redeployments if needed.

In short:

Docker Compose → test locally → Make builds & packages → Docker images stored in ECR →
Deployment starts containers → Nginx serves frontend, backend runs API → Monitoring keeps
everything healthy.

4. The Nitty Gritty (Production & Maintenance)
Overview
Everything happens via Docker and the Makefile inside the membership-portal-deployment repo.
There are 3 main containers:

1.​ Postgres (database)
2.​ Backend (API)
3.​ Nginx (frontend/UI)

Local development uses Docker Compose; production uses Makefile commands, ECR, and Jenkins
pipelines.

4.1 SSH, Server Access, Important Commands

●​ make ssh → Logs into the EC2 instance.
○​ On mac, will need: chmod 400 id_rsa_west beforehand

●​ cd into membership-portal-deployment/prod
●​ Once connected, you can run Docker commands, manage the database, or deploy updates.
●​ make ecr-login

○​ Steps to generate credentials if needed:
○​ Go to AWS Console → Services → IAM → Users → nkansal → Security Credentials.
○​ Create an access key (Access Key ID + Secret Access Key).
○​ On your machine, run: aws configure
○​ Enter the Access Key ID, Secret Key, region (us-west-1b), and output format (json,

text, or table).
○​ Purpose: This configures your local AWS CLI so make ecr-login can authenticate to

ECR.
●​ sudo docker system prune -a (removes all old images)

○​ Removes all unused Docker objects: stopped containers, unused networks, dangling
images, and build caches.

○​ Effect: Frees up disk space and ensures you don’t have old or unused Docker images
hanging around that could cause confusion or conflicts.

○​ ⚠️ Warning: This deletes all unused images and containers, so make sure you don’t
need them before running it.

4.2 Updating Production

Updating prod” means bringing the production environment (the live app that users access) up to
date with the latest code from the deploy branch. Steps to update prod to match deploy branch:

1.​ In both repos:​
 git pull
git checkout <branch>
make build
make push

2.​ In membership-portal-deploy/prod:​
 make deploy

4.3 Deploying
●​ Merge master into deploy and get PR approvals
●​ This triggers the Jenkins pipeline for deployment automatically.

4.4 Creating a New Instance
Creating a new EC2 instance gives you a clean, secure, and reliable environment for deploying the
membership portal—whether it’s for production, testing, or scaling.

1.​ Get a new SSH key
Generate a key and update it in the membership-portal-deployment repository so
deployment scripts can access the server.

2.​ Install Docker and Docker Compose
Required to run containers for the backend, frontend, and database.

3.​ Decrypt Certificates: make certs
Prepares SSL/TLS certificates for Nginx so HTTPS works on the new instance

4.​ Decrypt Environment Variables: make env​
Loads secret variables (like database credentials or API keys) needed for the app.

5.​ Deploy the App: make deploy​
Builds Docker images and starts all containers on the new instance. Ensures the membership
portal is live and functioning.

4.5 Adding a New Event as Admin User

1.​ Login with your @g.ucla.edu account to create an account if one doesn’t already exist
2.​ Two ways (New & Legacy)
3.​ New:

a.​ Sign into membership portal at members.uclaacm.com
b.​ Go to settings
c.​ Add Admin Accounts button

http://members.uclaacm.com

d.​ Add your email (and any other officers to add as admin)
e.​ Password is UCLA_Admin_Pass

i.​ Hard coded for now, will be updated in the future
4.​ Legacy

a.​ cd into membership-portal-deployment/prod
b.​ SSH into prod: make ssh
c.​ Find Postgres container: docker ps → <container_id>
d.​ Enter container: docker exec -it <container_id> /bin/bash
e.​ Update admin user in Postgres:

psql -U postgres​
SELECT * FROM users WHERE email = 'your-email@g.ucla.edu';​
UPDATE users SET "accessType" = 'ADMIN' WHERE email =

'your-email@g.ucla.edu';

f.​ Log out and log back in using your @g.ucla.edu email → now you can add events.

4.6 Certificates
●​ THESE STEPS WILL DROP THE DB. MAKE SURE YOU TAKE A BACKUP
●​ Certificates expire every 3 months.

○​ Last renewed: 2025-11-19
○​ Next renew: 2026-02-19

●​ Steps to renew:
1.​ SSH into prod: make ssh
2.​ Backup DB: make pg_bkup
3.​ Stop services: sudo make stop
4.​ Renew certificates: sudo make renew-certs

a.​ Option 1

b.​ Domain Name(s): members.uclaacm.com
5.​ Package certs: sudo make package-certs

a.​ Passphrase: uclaacm
b.​ Overwrite: yes

6.​ Git add, commit, and push it (If push doesn’t work, just proceed to deploy)
7.​ Deploy: make deploy

●​ Verify by checking the cert expiration (https certs) on the membership portal page.

4.7 Restoring/Backing Up Database
●​ To save a backup:

○​ make pg_bkup (want to take this off the instance)
●​ To restore backup in SSH:

1.​ Run docker ps to find <container_id> for postgres container
2.​ Enter container: docker exec -it <container_id> /bin/bash
3.​ Recreate database:

psql -U postgres -d template1
DROP DATABASE IF EXISTS postgres;
CREATE DATABASE postgres;
\q
psql -U postgres -d postgres -f /backup/<backup_file_name>

4.8 Extracting Database Data to Local Machine

1.​ ssh into EC2 server because database is hosted there
2.​ make psql will connect you to production database
3.​ run \copy command in postgres to convert to csv

a.​ Example Query:
\copy (
 SELECT concat("firstName", ' ', "lastName")
 FROM (
 SELECT attendances.user AS user
 FROM attendances
 WHERE event=<EVENT UUID>
) AS s
 INNER JOIN users ON users.uuid = s.user
) TO '<PATH TO FILE>'
This example gets a list of users who attended a specific event and saves it as a CSV

4.​ Move file from Postgres container to EC2 host (ssh into postgres container to copy files)
​ docker cp <container_id>:/<PATH TO FILE> .

5.​ Move files from EC2 to local machine
sudo scp -i id_rsa_acm_west ec2-user@members.uclaacm.com:<PATH TO FILE> .

4.9 Resetting the Membership Portal
●​ Create a milestone (after each quarter)
●​ Yearly, delete all the users (not done yet)

○​ Another option to build, something that if they haven’t logged in in a year, send email
saying account will be deleted

4.10 Reset Portal for the Year
1.​ In the membership-portal-deployment repository, cd into prod and run make ssh

a.​ On mac, will need: chmod 400 id_rsa_west beforehand
2.​ cd into membership-portal-deployment/prod
3.​ run docker ps to find <container_id> for postgres container
4.​ run the following commands

a.​ docker exec -it <container_id> /bin/bash
b.​ psql -U postgres
c.​ UPDATE users SET points = 0;

5. Discord Bot:
To add the bot to the server, use the discord permissions calculator
(https://discordapi.com/permissions.html), select the necessary permissions, put the client id from the
dev portal, and use "bot application.commands" as the scope to generate the required join link

Verification Bot Github
Discord Bot Github

https://github.com/uclaacm/discord-verification-bot-deployment
https://github.com/uclaacm/ACM-at-UCLA-Discord-Bot

6. ACM Design Requests
Add a ticket to the following notion: ACM Design Notion
You may have to reach out to an ACM Design CPrez to get access to the notion

https://www.notion.so/171a40a159a84ee896c42eb7d71d19c5?v=fe8610a9b10e4d0bbfe0cc6e21854926

Problems/Tips

Entries should be formatted in the following order:
1.​ Title / Short Description

E.g., “Not pulling the latest changes before committing.”
2.​ Symptoms / How it Shows Up

E.g., “Merge conflicts appear when you try to push, or your changes are overwritten.”
3.​ Cause / Why it Happens

E.g., “Working on an outdated branch without syncing from main/master.”
4.​ Solution / Best Practice

E.g., “Always run git pull origin main before starting work and before pushing
commits.”

5.​ Optional Tips / Notes
E.g., “Consider enabling auto-fetch in your IDE to stay updated.”

6.​ Categorization
●​ Git / Version Control
●​ Frontend / UI Issues
●​ Backend / API Mistakes
●​ Deployment / Hosting Errors
●​ Data / Spreadsheet Integration Errors

Website

Short
Description

How it shows up Cause Solution/Tips Categorization

MP - Deployment

Description Issue Solution/Tips/Notes

Membership Portal
Debugging

docker build -t

527059199351.dkr.ecr.us-west-1.amazonaws.com/me

mbership-portal:deploy

/home/ec2-user/membership-portal​
aws ecr get-login-password --region us-west-1 |

docker login --username AWS --password-stdin

527059199351.dkr.ecr.us-west-1.amazonaws.com​
docker push

527059199351.dkr.ecr.us-west-1.amazonaws.com/me

mbership-portal:deploy​
cd ~/membership-portal-deployment/prod​
make deploy

docker build -t

527059199351.dkr.ecr.us-west-1.amazonaws.com/me

mbership-portal-ui:deploy

/home/ec2-user/membership-portal-ui​
aws ecr get-login-password --region us-west-1 |

docker login --username AWS --password-stdin

527059199351.dkr.ecr.us-west-1.amazonaws.com​
docker push

527059199351.dkr.ecr.us-west-1.amazonaws.com/me

mbership-portal-ui:deploy​
cd ~/membership-portal-deployment/prod​
make deploy

MP - Frontend

Short
Description

How it shows up Cause Solution/Tips Categorization

MP - Backend

Short
Description

How it shows up Cause Solution/Tips Categorization

	Documentation
	1. Overview
	1.1 Quick Links
	1.2 General Contribution Guidelines
	1.3 Other

	
	2. ACM Website
	2.1 Tech Stack
	2.2 Running the Project Locally
	
	2.3 Key Folders

	
	3. Membership Portal
	3.1 Tech Stack:
	3.2 Running Project Locally:
	3.3 Frontend
	3.3.1 Key Terms
	3.3.2 General Logic

	3.4 Backend
	3.4.1 Key Terms
	3.4.2 General Logic

	
	3.5 Database Structure
	3.5 DevOps
	3.5.1 Docker Logic
	3.5.2 General Logic

	
	4. The Nitty Gritty (Production & Maintenance)
	4.1 SSH, Server Access, Important Commands
	
	4.2 Updating Production
	4.3 Deploying
	4.4 Creating a New Instance
	
	4.5 Adding a New Event as Admin User
	4.6 Certificates
	4.7 Restoring/Backing Up Database
	4.8 Extracting Database Data to Local Machine
	4.9 Resetting the Membership Portal
	4.10 Reset Portal for the Year

	
	5. Discord Bot:
	Verification Bot Github
	
	6. ACM Design Requests
	Problems/Tips
	Website
	MP - Deployment
	Membership Portal Debugging

	MP - Frontend
	MP - Backend

