1.3C Reacting Masses and Volumes *Gas Laws*

Past Exam Questions (Paper 1, 2)

1. [1 mark]

What is the mass, in g, of one molecule of ethane, C_2H_6 ?

- A. 3.0×10^{-23}
- B. 5.0×10^{-23}
- C. 30
- D. 1.8×10^{25}

2. [1 mark]

The volume of an ideal gas at 27.0 °C is increased from 3.00 dm^3 to 6.00 dm^3 . At what temperature, in °C, will the gas have the original pressure?

- A. 13.5
- B. 54.0
- C. 327
- D. 600

3. [1 mark]

 $5 \ dm^3$ of carbon monoxide, CO(g), and $2 \ dm^3$ of oxygen, $O_2(g)$, at the same temperature and pressure are mixed together. Assuming complete reaction according to the equation given, what is the maximum volume of carbon dioxide, $CO_2(g)$, in dm^3 , that can be formed?

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

- A. 3
- B. 4
- C. 5
- D. 7

What volume of sulfur trioxide, in cm3, can be prepared using $40 \ cm^3$ sulfur dioxide and $20 \ cm^3$ oxygen gas by the following reaction? Assume all volumes are measured at the same temperature and pressure.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- A. 20
- B. 40
- C. 60
- D. 80

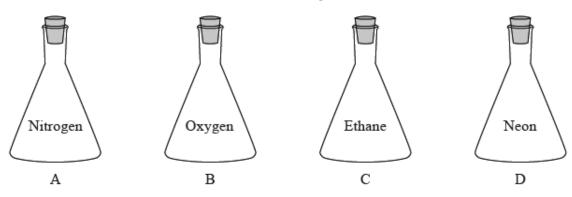
5. [1 mark]

What volume of carbon dioxide, in dm 3 under standard conditions, is formed when 7.00 g of ethene (C_2H_4 , $M_r=28.1$) undergoes complete combustion?

- A. $\frac{22.4 \times 28.1}{7.00}$
- B. $\frac{22.4 \times 7.00}{28.1}$
- C. $\frac{2 \times 22.4 \times 28.1}{7.00}$
- D. $\frac{2 \times 22.4 \times 7.00}{28.1}$

6. [1 mark]

- $1.0 \ dm^3$ of an ideal gas at 100 kPa and 25 °C is heated to 50 °C at constant pressure. What is the new volume in dm^3 ?
- A. 0.50
- B. 0.90
- C. 1.1
- D. 2.0


7. [1 mark]

A fixed mass of gas has a certain volume at a temperature of 50 °C. What temperature is required to double its volume while keeping the pressure constant?

- A. 100 K
- B. 323 K

- C. 373 K
- D. 646 K

Four identical containers under the same conditions are filled with gases as shown below. Which container and contents will have the highest mass?

9. [1 mark]

The volume occupied by one mole of an ideal gas at 273 K and 1.01 \times 10⁵ Pa is 22.4 dm^3 . What volume, in dm^3 , is occupied by 3.20 g $O_2(g)$ at 273 K and 1.01 \times 10⁵ Pa?

- A. 2.24
- B. 4.48
- C. 22.4
- D. 71.7

10. [1 mark]

What volume, in m^3 , is occupied by 2.00 mol of gas at 27 °C and 2.00 atm pressure?

Assume: $1.00 \ atm = 1.01 \times 10^5 \ Pa \ and \ R = 8.31 \ J \ K^{-1} mol^{-1}$.

A.
$$\frac{8.31 \times 27}{1.01 \times 10^5}$$

B.
$$\frac{2.00 \times 8.31 \times 27}{1.01 \times 10^5}$$

C.
$$\frac{2.00 \times 8.31 \times 300}{2.00 \times 1.01 \times 10^5}$$

D.
$$\frac{2.00 \times 8.31 \times 300}{1.01 \times 10^5}$$

What is the pressure, in Pa, if 3 mol of gas occupies $500 cm^3$ at 25 °C?

Given: $R = 8.31 J K^{-1} mol^{-1}$

$$10^{-3} \, m^3 = 10^3 \, cm^3$$

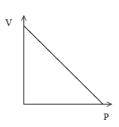
- A. $\frac{3 \times 8.31 \times 298}{500}$
- B. $\frac{3 \times 8.31 \times 25}{0.0005}$
- C. $\frac{3 \times 8.31 \times 25}{500}$
- D. $\frac{3 \times 8.31 \times 298}{0.0005}$

12. [1 mark]

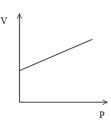
What is the pressure, in Pa, in a 100 cm^3 container containing 1.8 g of steam at a temperature of 727 °C? ($R = 8.31 J K^{-1} mol^{-1}$)

- A. $\frac{1.8 \times 8.31 \times 727}{18 \times 100}$
- B. $\frac{18 \times 100}{1.8 \times 8.31 \times 727}$
- C. $\frac{1.8 \times 8.31 \times 1000}{18 \times 10^{-4}}$
- D. $\frac{1.8 \times 8.31}{1.8 \times 10^{-4} \times 1000}$

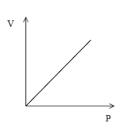
13. [1 mark]

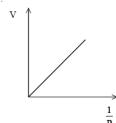

What volume of carbon dioxide, $CO_2(g)$, in dm^3 , is produced when 1 dm^3 of octane, $C_8H_{18}(g)$, undergoes complete combustion?

$$2C_{8}H_{18}(g) \,+\, 25O_{2}(g) \rightarrow 16CO_{2}(g) \,+\, 18H_{2}O(g)$$


- A. 1
- B. 4
- C. 8
- D. 9

Which graph represents the relationship between volume and pressure for a fixed mass of gas at constant temperature?


A.


Е

C

D

15. [1 mark]

At which temperature, in K, assuming constant pressure, is the volume of a fixed mass of gas at $127\,^{\circ}\text{C}$ doubled?

- A. 200 K
- B. 254 K
- C. 400 K
- D. 800 K

16. [1 mark]

Which volumes of gases at standard temperature and pressure have the same mass as $100\ cm^3$ of O_2 ?

- I. $50 cm^3 of SO_2$
- II. $100 cm^3$ of CH_4
- III. $100 cm^3 of SiH_4$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

At which temperature, in K, assuming constant pressure, is the volume of a fixed mass of gas at 127 $^{\circ}\text{C}$ doubled?

- A. 200 K
- B. 254 K
- C. 400 K
- D. 800 K

18. [1 mark]

Under which conditions does CH_4 have the same number of molecules as 100 cm^3 of O_2 at 27 °C and 1.0 \times 10 5 Pa?

	Volume / cm³	Temperature / °C	Pressure / 10 ⁵ Pa
A.	50	54	1.0
B.	50	327	1.0
C.	100	54	2.0
D.	100	327	2.0

19. [2 marks]

Consider the following sequence of reactions.

$$RCH_{3} \rightarrow ^{reaction1} RCH_{2} Br \rightarrow ^{reaction2} RCH_{2} OH$$

 RCH_3 is an unknown alkane in which R represents an alkyl group.

A 1.00 g gaseous sample of the alkane has a volume of 385 $\rm cm^3$ at standard temperature and pressure. Deduce its molecular formula.

20a. [1 mark]

Airbags are an important safety feature in vehicles. Sodium azide, potassium nitrate and silicon dioxide have been used in one design of airbag.

[Source: www.hilalairbag.net]

Sodium azide, a toxic compound, undergoes the following decomposition reaction under certain conditions.

$$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$$

Two students looked at data in a simulated computer-based experiment to determine the volume of nitrogen generated in an airbag.

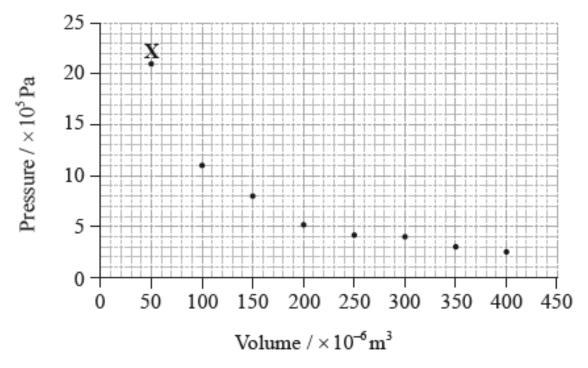
Using the simulation programme, the students entered the following data into the computer.

Temperature (T) / °C	Mass of NaN ₃ (s) (m) / kg	Pressure (p) / atm
25.00	0.0650	1.08

State the number of significant figures for the temperature, mass and pressure data. *T*: m: p: **20b.** [1 mark] Calculate the amount, in mol, of sodium azide present. **20c.** [4 marks] Determine the volume of nitrogen gas, in dm^3 , produced under these conditions based on this reaction.

21. [2 marks]

Nitrogen monoxide may be removed from industrial emissions via a reaction with ammonia as shown by the equation below.


$$4NH_{_{3}}(g)\,+\,6NO(g)\rightarrow5N_{_{2}}(g)\,+\,6H_{_{2}}O(l)$$

 $30.0\,dm^3$ of ammonia reacts with $30.0\,dm^3$ of nitrogen monoxide at $100\,^\circ\text{C}$. Identify which gas is in excess and by how much and calculate the volume of nitrogen produced.

22a. [1 mark]

The graph below shows pressure and volume data collected for a sample of carbon dioxide gas at $330\ K$.

Draw a best-fit curve for the data on the graph.

22b. [1 mark]
Deduce the relationship between the pressure and volume of the sample of carbon dioxide gas.
22c. [3 marks]
Use the data point labelled ${\bf X}$ to determine the amount, in mol, of carbon dioxide gas in the sample.
23. [4 marks]
The molar mass of a volatile organic liquid, X , can be determined experimentally by allowing it to vaporize completely at a controlled temperature and pressure. 0.348 g of X was injected into a gas syringe maintained at a temperature of 90 °C and a pressure of 1.01×10^5 Pa. Once it had reached equilibrium, the gas volume was measured as 95.0 cm .
(i) Determine the amount, in mol, of ${\bf X}$ in the gas syringe.
(ii) Calculate the molar mass of X .

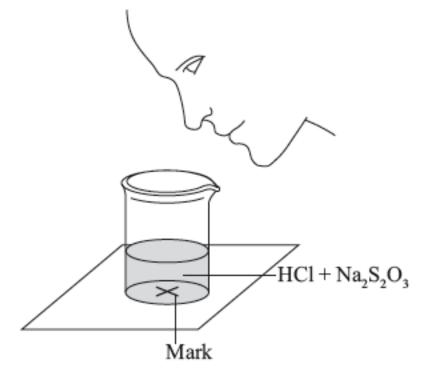
24a.	[1	mark]	

A student added 7. 40×10^{-2} g of magnesium ribbon to 15. 0 cm^3 of 2. 00 mol dm^{-3} hydrochloric acid. The hydrogen gas produced was collected using a gas syringe at 20.0 °C and 1. 01×10^5 Pa .
State the equation for the reaction between magnesium and hydrochloric acid.
24b. [3 marks]
Determine the limiting reactant.
beter mine the minering redectant.
24c. [3 marks]
Calculate the theoretical yield of hydrogen gas:
(i) in mol.
(ii) in cm^3 , under the stated conditions of temperature and pressure.

24d. [2 marks]

The actual volume of	of hydrogen measure	ed was lower than	n the calculated the	eoretical volume.

•	, , ,	


Suggest **two** reasons why the volume of hydrogen gas obtained was less.

25. [3 marks]

A group of students investigated the rate of the reaction between aqueous sodium thiosulfate and hydrochloric acid according to the equation below.

$$Na_{2}S_{2}O_{3}(aq) \, + \, 2HCl(aq) \rightarrow 2NaCl(aq) \, + \, SO_{2}(g) \, + \, S(s) \, + \, H_{2}O(l\,)$$

The two reagents were rapidly mixed together in a beaker and placed over a mark on a piece of paper. The time taken for the precipitate of sulfur to obscure the mark when viewed through the reaction mixture was recorded.

Initially they measured out $10.0 \ cm^3$ of $0.500 \ mol \ dm^{-3}$ hydrochloric acid and then added $40.0 \ cm^3$ of $0.0200 \ mol \ dm^{-3}$ aqueous sodium thiosulfate. The mark on the paper was obscured 47 seconds after the solutions were mixed.

Calculate the volume of sulfur dioxide, in cm^3 , that the original reaction mixture would produce if it were collected at 1.00 $ imes$ 10 5 Pa and 300 K.	

Another group suggested collecting the sulfur dioxide and drawing a graph of the volume of

Printed for INDEP SCHS FOUNDATION ACAD LIMITED

© International Baccalaureate Organization 2020

gas against time.

International Baccalaureate® - Baccalauréat International® - Bachillerato Internacional®