Electrochemistry

- 1. i) Carbon carbon/platinum carbon
 - ii) The concentration of magnesium sulphate increase
 - Hydrogen and oxygen given off at the electrodes reduce the water content

(1 mk)

2. $Cu^{2+} + 2c Cu_{(s)}$ Mass =

$$1.48 = \underline{63.5 \times 1 \times 2.5 \times 60}$$
$$2 \times 96500$$

$$I = \underbrace{1.48 \times 2 \times 96500}_{63.5 \times 2.5 \times 60}$$
$$= 29.988 A$$

3. a) Anode is electrode A

B is cathode

- b) $2H^{+}_{(aq)} + 2e^{-}_{}$ $H_{2(g)}$
- c) The acid becomes more
- 4. i) $200 \times 58 \times 60 \text{ C}$ 64.8g $\sqrt{\frac{1}{2}}$ 27g $\sqrt{\frac{1}{2}}$

- *ii)* $40H_{-(g)}$ $2H_2O_{(L)} + O_{(g)}^2 + 4e^- \sqrt{\frac{1}{2}}$
 - 4×96500 22.4 $dm^3 \vee \frac{1}{2}$

200 X58 X 60 X 22.4 4 X 96500 C

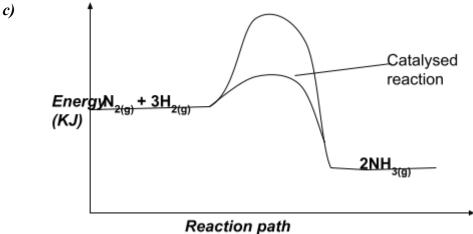
 $= 40.39 dm^3 \sqrt{\frac{1}{2}}$

- 5. a) $Mg_{(s)} + Pb^{2+}_{(aq)}$ $Mg^{2+}_{(aq)} + Pb_{(s)}$
 - b) 0.13 (-0.76)= +0.53V
- 6. (a) $2F = 10 \Rightarrow 2F 10 = 0$; $2F = 10 \therefore F = +5$ F = +5 (penalize -5)
 - (b) Group V
- 7. Aluminium has a higher electrical conductivity than sodium. $\sqrt{1}$ Aluminium has three delocalized $\sqrt{1/2}$ electrons in its metallic structure while sodium has only one delocalized electron in its structure. $\sqrt{1/2}$
- 8. $Q = It^{\sqrt{2}}$ $= 3 \times 50 \times 60^{\sqrt{2}}$ $= 9000 C^{\sqrt{2}}$

1 mole of Zn is liberated by a charge of 2 f.

- 9. a) Q is sulphur (IV) oxide $SO_2(g)$. $\sqrt{1}$
 - Impure copper Anode

 Pure copper Cathode


 Copper (II) Suphate solution
 - Impure copper is the while pure copper is cathode. During electrolysis impure copper is purified and pure copper deposited on the cathode as shown in the half electrode reaction below; <u>CATHODE EOUATION:</u>

$$\frac{Cu^{2+} + 2e - Cu(s)}{Cu(s)} \sqrt{2}$$

- The cathode is therefore removed and replaced after an interval.
- 10. a) i) the yield of NH_3 would be lowered $\sqrt{\frac{1}{2}}$ any supply of heat makes NH_3 to decompose to N_2 and H_2

ii) the yield of NH_3 would be increased

b)a catalyst accelerate the rates of both forward and reverse reactions equally $\sqrt{\frac{1}{2}}$. Equilibrium position is not affected by a catalyst $\sqrt{\frac{1}{2}}$

- 11. $a)T\sqrt{b)Z_S + 2G^+ 2G_{(S)} + Z_{(aq)}^{2+}} \sqrt{1}$ $c)E^{\theta} cell = E - E$ $= \theta.08 - (-2.38)\sqrt{1}$ = +3.18
- 12. Mass of due to $C = 12 \times 4.2 = 1.145 \sqrt{\frac{1}{2}}$

Mass of due to
$$H = \frac{44}{2} X 1.71 = 1.889 \sqrt{\frac{1}{2}}$$

Moles of
$$C = \frac{1.145}{12} = 0.095\sqrt{\frac{1}{2}}$$

12

Moles of $H = \frac{0.1889}{0.1889} = 0.1889\sqrt{\frac{1}{2}}$

Moles ratio c: r

0.095: 0.1889 $\sqrt{\frac{1}{2}}$

1: 2

E.F = $CH_2\sqrt{\frac{1}{2}}$ (accept alternative method)

Copper (II) ions = 2 faradays (penalize
$$\frac{1}{2}$$
 mk for missing/wrong units)

2 faradays yield = 64g of copper

1.5 faradays yield = ?

= $\frac{1.5}{2}$ x $\frac{64g\sqrt{\frac{1}{2}}}{2}$

= 48g of copper was obtained $\sqrt{\frac{1}{2}}$

14. Physical difference:-

 Na_2O_2 – yellow while Na_2O is white Chemical difference:- N_2O_2 reacts with water to form NaOH and O_2 while Na_2O reacts with water to form NaOH only

(c)
$$Mg_{(s)}/Mg^{2+}_{(aq)}//Pb^{2+}_{(aq)}/Pb_{(s)}$$

16. (a) MnO_4 is reduced;

Oxidation number of Mn is reduced from +7 to +2

$$(b)5Fe^{2+}_{(g)} \longrightarrow 5Fe^{3+}_{(aq)} + 5e;$$

17. i)
$$2 Cr_{(S)} = 2Cr^{3+}_{(aq)} + 6e$$

$$3Fe^{2+}_{(aq)} + 6e_{\underline{}}$$

$$2Cr_{(g)} + 3Fe^{2+}_{(aa)}$$
 $2Cr^{3+}_{(aa)} + 3Fe_{(g)} \sqrt{ }$

ii)
$$0.30 = -0.44 - E_R^{\phi}$$

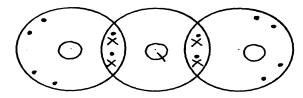
 $E_R^{\phi} = -0.44 - 0.30$
 $= -0.74V \sqrt{}$

- 18. (a) Filtration of air/electrostatic precipitation/purification
 - Passing through sodium hydroxide/potassium hydroxide to absorb Carbon (IV) oxide gas
 - Cool to remove water, vapour as ice
 - -Cool remaining air to liquid by repeated compression and expansion of liquid air
 - Fractional distillation of liquid air- Nitrogen collected at -196° C
 - (b) (i) Nitrogen (II) Oxide

$$NH_{3(g)} + CuO_{(s)}N_{2(g)} + H_2O_{(l)} + Cu_{(s)}$$
-3

 $\frac{1}{2}$

Reduction


- OR Oxidation number of N_2 in NH_3 increases from -3 to 0. Oxidation number of reducing agent increases or oxidation number of Cu in CuO decreases from +2 to 0 hence is a reducing agent
- (iii) $NH_4NO_3 N_2O + 2H_2O$
- (iv) Fertilizer/expose
- (c) (i) G or G

(ii)
$$E^{2+}_{(aq)} + 2OH_{(aq)} \longrightarrow E(OH)_{2(s)}$$

19. a) i) $G//G_{2(g)}$ Not G^{-}

It has the highest potential OR highest reduction potential $\sqrt{1}$ mark

ii) G and N or $G_{2(g)}//N_{(g)}$ $\sqrt{1}$ mark

20. a) (i) Cathode – steel

Anode - Carbon / graphite

- (ii) To lower the melting P^+ hence reducing cost of heating the salt.
- (iii) To prevent the two products from recombining.
- (iv) Cathode

$$Na^+_{(l)} + e^- \longrightarrow Na_{(l)}$$

Anode

$$2 C l_{(0)} - C l_{(g)} + 2 e$$

- (v) less dense than electrolyte/ has low density
- b) (i) quantity = $6.42 \times 1060 = 3852$

21. .a) i)
$$H^{+}_{(aq)} + e^{-} \rightleftharpoons \frac{1}{2} H_{2}$$

ii)
$$E \ cell = 0.76 + 0.54 = +1.3 \ volts$$

iii) I.
$$Fe^{3+}$$
II. Zn
IV. Fe^{3+} ion
 $2 Fe^{3+} + 2 e^{-} \longrightarrow 2 Fe^{2+} E^{0} = +0.77$
 $2 I \longrightarrow I_{2g} + 2e E^{0} = -0.54$

$$2 Fe_{(aq)}^{3+} + 2I_{(aq)}^{-} - 2Fe_{(aq)}^{2+} + I_2 E^{0} = +0.23$$

- 22. a) i) Chlorine Has a higher reduction potential ii) +1.36 2.36 = +3.72
 - b) i) P and S ii) iii) +1.50 - 0.44 + + 1.94

Charge of X = +2Formula $X(NO_3)_2$

23. (a) B – Copper metal
C – Chlorine gas
D – Ammmonia gas
E – Zinc

(b) (i)
$$Cu^{2^{+}}_{(aq)} + 2e^{-}$$
 — $Cu_{(s)}$
(ii) $CuSO_4 + Zn_{(s)}$ — $ZNSO_4 + Cu_{(s)}$
 $Cu^{2^{+}} + Zn_{(s)}$ — $Cu_{(s)} + Zn^{2^{+}}_{(aq)}$

- (c) Water treatment -Manufacture of hydrochloric acid
- (d) Tetra mine copper (II) ions

24. (a) (i)
$$E^{\theta} = 1.13V$$

(ii) T_2 because it's standard electrode potential is zero. i.e. point of reference.

(iv)
$$E.m.f = +1.23 - -0.76 = 1.99 V$$

(b) (i) x - Oxygen y - Hydrogen

(ii)
$$40H_{(aq)} - 2H_2O + O_2 + 4e$$

- (iii) Reduction takes place at electrode Y. H⁺ ions gain electrons to form hydrogen gas.
- (iv) Platinium / graphite/ Nickel because it is inert.

25. (i)
$$Zn^{2+}_{(aq)} + 2OH_{(aq)} - Zn(OH)_{2(s)}$$

 $Zn(OH)_{2(s)} + 4NH_{3(aq)} - Z$ $\Big]_{(aq)} + 2OH_{(aq)}$

- (ii) The mixture consists of a soluble compound and an insoluble compound.
- (iii) Evolution brown fumes of NO₂ gas
- (iv) CO_3^{2-} Because its reaction with HNO₃ produces CO_2 gas or $2H^+_{(aq)} + CO_3 2_{-(aq)} H_2 O_{(l)} + CO_{2(g)}$ (v) Pb^{2+} ion
- (vi) Lead (ii) Carbonate

Zinc (II) Nitrate

- 26 A (i) Process by which an electrolyte is decomposed by passing an electric current through it.
 - (ii) Anode left pt rod

Cathode – right pt rod

- (iii) Blue /pale green colour fades
 - P solution becomes acidic

B (i)
$$a. - D^{2+}$$

 $b. - D^{2+}$
(ii) C

$$E_{cell} = E_{ordn} - E_{ordn}$$

$$= +0.34 - (-2.92) = +3.26V$$
(iii) $B_{(s)}/B^{2+}_{(aq)}/D^{2+}_{(aq)}/D(s)$; $E = +3.26V$

27
$$Q = 40000 \times 60 \times 60 = 144000000c$$

Mass of $Al = \underbrace{144000000 \times 27}_{3 \times 96500}$ 1
 $= 13.43kg$ 1

- 28. a) Strip of copper metal dissolved forming blue solution. $\sqrt{2}$
 - b) Copper displaces ions $\sqrt[4]{2}$ of Q from solution since copper is more electropositive $\sqrt[4]{2}$ than Q.

c) E.m.f of cell =
$$(0.80 - 0.34)V^{\sqrt{2}}$$

= $0.46V^{\sqrt{2}}$

- 29 (a) (i) Carbon (IV) Oxide gas evolved was lost to the atmosphere
 - (ii) Concentration of reactants higher between O and R Reaction rate faster
 - (iii) Grinding the marble chips
 - (iv) Calcium sulphate
 - (v) Plaster of Paris
 - (b) (i) Hydrogen ions discharged;

It takes less energy than calcium ions

30. a) the bulb light $\sqrt{\frac{1}{2}}$

Hydrogen chloride gas ionized in water to give H^+ and cl (aq) that are responsible for conduction of electric current $\sqrt{1}$

$$b)2H^+(aq)+\underline{ze^-}$$
 $H_2(g)\sqrt{1}$

31.
$$Q = it$$
 $IF = 69500C$ $2F$ $206g ext{ of } Pb$ $= 40x(5x60)$ $= 1200 ext{ C}$ $= 1200 ext{ C}$ $= 0.01243 ext{ x } 206$ $= 0.01245 ext{ F}$ $= 1.280g$

b)
$$I K_{(s)} K^{2+}_{(aq)} + 2e^{-}$$

$$Na + 2e N_{(g)}$$

- II 1. Salt bridge
 - 2. Complete the circuit
 Balance the ions in each half cell

- 32. (a) (i) Zinc sulphate / Zinc chloride / Zinc nitrate solution
 - (ii) Copper

(iii)
$$Zn_{(s)} + Cu^{2+}_{(aq)} = Zn^{2+}_{(aq)} + Cu_{(s)}$$

(iv)
$$E = 0.34 + 0.76$$

= 1.0V

(b) (i)Concentrated sodium chloride solution

$$Na^+(aq) + e N_{(l)}$$

(iii) Sodium amalgam is flown into water. It reacts forming sodium hydroxide solution

<i>33</i> .	Quantity of electricity = (40,000 \times 60 \times 60) Coulumbus $\sqrt{\frac{1}{2}}$ mark
	3 x 96,500 Coulumbus produce 27g of Al

$$\therefore 40,000 \times 60 \times 60 \times 27 \text{ Kg} \qquad \sqrt{\frac{1}{2} \text{ mark}}$$

$$3 \times 96,500 \times 1000 \qquad \sqrt{\frac{1}{2} \text{ mark}}$$

$$= 13.43 \text{ Kg} \sqrt{\frac{1}{2} \text{ mark}}$$

$$\text{Subtract } \frac{1}{2} \text{ mark if units missing or wrong}$$

$$[Total 12 \text{ marks}]$$

- 34. i) Increased yield of $NO/\sqrt{1}$ mark Equilibrium shifts to the right // favours the forward reaction// reduced pressure favours forward reaction// increased volume number of molecules
 - ii) It will not affect the yield // remains the same Catalyst do not affect position of Equilibrium
- $35. \qquad a) R$
 - **b)** T
 - c) i) $T_{(g)}$ and $S_{(g)}$

- iii) $T_{(s)}$ _____ T^{2+} $_{(aq)} + 2e$, E = +0.74V
- iv) From T(s)/T2+ half cell to S2+/S(s) half cell through conducting wires

d) i)
$$Q = It$$

= 2.5 x (15x60)
= 2250C

ii)
$$RAM = mass x valency x 96500$$

$$Q$$

$$= 0.74 x 2 x 96500$$

$$2250$$

$$= \frac{142820}{2250}$$

$$= 63.476$$

- 36. a) R
 - *b) T*
 - c) i) $T_{(g)}$ and $S_{(g)}$

iii)
$$T_{(s)}$$
 $T^{2+}(aq) + 2e$, $E = +0.74V$

iv) From T(s)/T2+ half cell to S2+/S(s) half cell through conducting wires

d) i)
$$Q = It$$

= 2.5 x (15x60)

ii)
$$RAM = \frac{mass \ x \ valency \ x \ 96500}{Q}$$

$$= \frac{0.74 \ x \ 2 \ x \ 96500}{220}$$

$$= \frac{142820}{2250}$$

$$= 63.476$$

- 37. $NH^{+}_{4}\sqrt{1}$, proton donor $\sqrt{ }$
- 38. a) Bubbles of colourless gas at the anode $\sqrt{\frac{1}{2}}$
 - Brown deposits at the cathode $\sqrt{\frac{1}{2}}$
 - Blue color of the solution fades

Any 2 1/2 mark each

b) The Ph decreases

Removal of OH^- ions leaves an excess of H^+ hence the solution becomes more acidic $\sqrt{}$

39. a) Anode. Copper anode dissolves

b)
$$Q = 0.5 \times 60 \times 64.3 = 1929C$$

 $0.64g \text{ of } Cu$ 1929 C
 $\therefore 63.5 \text{ of } Cu$
 $63.5 \times 1929 \sqrt{\frac{1}{2}}$
 0.64
 $= 191393 C \sqrt{\frac{1}{2}}$

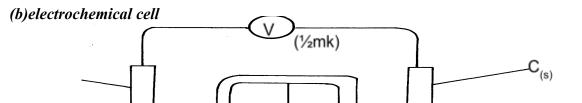
- 40. The grey-black solid changes to purple gas iodine sublimes at low temperature due to weak Van der walls forces
- 41. (a) The mass of substance liberated during electrolysis is directly proportional to the quantity of electricity passed

(b) Quantity of electricity =
$$2 \times 2 \times 36000 = 14400c(\frac{1}{2}mk)$$

Volume of gas evolved = $\frac{14400 \times 22.4}{2 \times 96500} = 1.671 dm^3$

- 42. (a) $OH^{-}\sqrt{1}$ (1 mk)
- 43. (i) ZnS- No mark if the letters are joined
 - (ii) SO_2 produced as a by-product is used in contact process to obtain H_2SO_4 . This acid is used in making fertilizers e.g. ammonium sulphate
- 44. (i) CaO is basic and P_4O_{10} is acidic

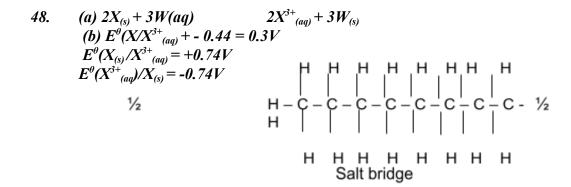
(ii) Let the ON of P be
$$x$$


$$4x + (-2x10) = 0$$

$$4x = \pm 20$$

$$4 \qquad 4 \qquad 1/2$$

$$x = \pm 5$$
(iii) Used as a fertilizer


45. Platinum electrode is used, H_2 is bubbled over the pt electrode immersed in 1M H+ i.e 1M HCl. The electrode is coated with finely –divided platinum catalyst

 $M_{(s)}$ (½mk) (½mk) $C^2_{(aq)}$ 46. + 0.76 + 0.34 = 1.0 Volts (½mk) 47. (a) - Red- Phosphorous - White - Phosphorous

(b) Phosphorous is insoluble in water because its non-polar while water is polar. It cannot be stored in oil because oil is non-polar it will dissolve the phosphorous.

49. Electrode - E_1 is the anode

Dilute electrolyte – OH ions are discharged.

$$4 OH_{(aq)}^{-} - 2H_2 O_{(e)} + O_{2(g)} + 4e^{-}$$

Oxygen gas is produced.

Discharge of hydroxyl ion increases the concentration of sodium chloride.

Chloride, Cl are then discharged.

Chloride, Cl-, are then discharged

Chloride gas is produce

$$2Cl_{(aq)} - Cl_{2(g)} + 2e^{-}$$

50. a)
$$C10_3^-$$
 (=) $Cl + 3(-2) = -1(=)Cl - 6 = -1, Cl = +5$

$$C10_3^- {}_{(aq)} 6H^+ {}_{(aq)} + 5e^- - Cl_{2(g)} + 3H_2O_{(l)}$$
b) NO_2^- (=) $N+2$ (-2) = -1 (=) $N-4$ = -1 (=) = $N+3$

$$NO_{2}^{-}+H_{2}O_{(l)}$$
 $NO_{3(aq)}^{-}+2H_{4(aq)}^{+}+2e^{-}$

51.

Half Cell $E^{\theta}/_{V}$	$E^{\theta}/_{V}$ using iron ref - electrode
$Al_{(s)}/Al_{(aq)}^{3+}$ - 1.66	- 1.22
$Zw_{(s)}/Zn^{2+}_{(aq)}$ - 0.76	+0.32
$Fe_{(s)}/Fe_{(aq)}^{2+}$ - 0.44	0.00
$Ni_{(s)}/Ni^{2+}_{(aq)}$ - 0.25	+ 0.19

52.
$$\theta = 1.5 \times 60 \times 15 = 1350$$

 $J^{3+}_{(aq)} + 3e^{-} \longrightarrow J_{(s)}$
 $3F = 3 \times 96500$ = 289 500C
289500C deposit = 52g of $J_{(s)}$
= 1350 C deposit = 1350 \times 52
289500 = 0.2 2425g

53. Tin (Sn) its oxidation potential is +0.144V. It is the least likely to combine/react with elements of weather