
Java

Summary
We've long observed that our balancer doesn't really work very well at my day job. After digging
into the balancer code I've realized that the cost functions that we care about are basically all
being overshadowed by some default multipliers that are huge for a few costs that are always
zero when not using secondary replicas.

Further, we'd like our HBase balancing to be smarter in many ways, but expanding the suite of
cost functions requires needlessly complicated code that's never evaluated in a vacuum, and
elaborate configuration incantations.

How the balancer works today
The Stochastic load balancer relies on a set of cost functions. The cost functions attempt to
convey imbalances among things like region count, storefile size, read request volume, etc..

Each cost function also has a configurable multiplier, which is any number >=0. This multiplier
tells the balancer how significantly to weigh a given cost function in the overall balancer
decision. You would want a higher multiplier for the cost functions that you consider to be most
important.

These code snippets, mostly taken verbatim from the Stochastic load balancer, explain pretty
clearly what it's doing:

sumMultiplier = 0; // the sum of all cost function multipliers
for (CostFunction c : costFunctions) {
 if (c.isNeeded()) {
 sumMultiplier += c.getMultiplier();
 }
}

double totalCost = 0.0; // the total cost from all cost functions and their
multipliers
for (CostFunction c : costFunctions) {
 if (!c.isNeeded()) {
 LOG.trace("{} not needed", c.getClass().getSimpleName());
 continue;
 }
 totalCost += c.cost() * c.getMultiplier();
}

// the minimum cost which would indicate an imbalance. This is configurable
minCostNeedBalance = getMinCostNeedBalance();

// if true, we are balanced
boolean balanced = (totalCost / sumMultiplier < minCostNeedBalance);

It's important to notice that we divide the totalCost by the sumMultiplier — in other
words, the existence of a large multiplier on one cost function can make other, smaller, cost
outputs basically irrelevantly small.

A few dominating cost functions
There are a few problematic cost functions:

1.​ PrimaryRegionCountSkewCostFunction
2.​ RegionReplicaRackCostFunction
3.​ RegionReplicaHostCostFunction

PrimaryRegionCountSkewCostFunction has a high default multiplier of 100000 and a cost
of 0 without secondary replicas enabled. RegionReplicaRackCostFunction has a default
multiplier of 10000. RegionReplicaHostCostFunction has a default multiplier of 500 which
is also quite high compared to other defaults, but obviously not to the same magnitude.

For example, some other cost function multiplier defaults are:

●​ ReadRequestCostFunction: 5
●​ StoreFileCostFunction: 5
●​ TableSkewCostFunction: 35

The result is that tables, even those without secondary replicas, must become egregiously
imbalanced in order for the default balancer to take reasonable action, and even when it does
it's virtually exclusively acting on the RegionCountSkewCostFunction and
HeterogeneousRegionCountCostFunction functions (which have the highest default,
excluding the 3 aforementioned replica costs, of 500). Having any of these multipliers at
100,000 while the others are single digit values makes the latter costs basically irrelevant.

Proposal
HBASE-28513 Pull Request

https://github.com/HubSpot/hbase/blame/hubspot-2.5/hbase-server/src/main/java/org/apache/hadoop/hbase/master/balancer/PrimaryRegionCountSkewCostFunction.java#L36
https://github.com/HubSpot/hbase/blame/hubspot-2.5/hbase-server/src/main/java/org/apache/hadoop/hbase/master/balancer/RegionReplicaRackCostFunction.java
https://github.com/HubSpot/hbase/blame/hubspot-2.5/hbase-server/src/main/java/org/apache/hadoop/hbase/master/balancer/RegionReplicaHostCostFunction.java#L38
https://github.com/apache/hbase/pull/6651

We should expand the stochastic load balancer to no longer only evaluate on continuous scales.
There should be a set of discrete "balancer conditionals" that it will evaluate in addition to the
existing cost functions.

This will both fix deficits in the balancer today, and enable a more powerful, flexible, and
straightforward balancer in the future.

For example, we should write a "DistributeReplicasBalancerConditional" which will evaluate
each RegionPlan, and reject it if it would colocate two replicas on a single host/rack. This would
be much easier to reason about compared to the existing replica cost functions, and would not
require squashing read/write/storefile size cost functions as well.

Another example, but this time a new feature: we should write a
"IsolateSystemTablesBalancerConditional" which will evaluate each RegionPlan, and reject
those that prevent system tables from running on a dedicated RegionServer.

A third example, we should expand on the system table isolation above and support meta table
isolation.

At my day job, these are all features that we would love to have OOTB tomorrow, and balancer
conditionals would make these features easy to support.

How Balancer Conditionals Could Fix This

Decoupling Constraints from Cost Functions
Balancer conditionals would allow us to decouple discrete, high priority, constraints from soft
balancing goals. Instead of relying solely on multipliers and cost functions to enforce critical
rules (like distributing read replicas), conditionals could outright reject any RegionPlan that
violates predefined rules..

Examples of Balancer Conditionals in Action
1.​ DistributeReplicasBalancerConditional:

-​ Rejects RegionPlan proposals that colocate replicas of the same region on the
same host or rack.

-​ This is much clearer and more direct than relying on the
RegionReplicaRackCostFunction or
RegionReplicaHostCostFunction, which must weigh the "cost" of violations
against other costs.

2.​ IsolateSystemTablesBalancerConditional:

-​ Rejects RegionPlan proposals that colocate system tables with user tables.

-​ Ensures that system tables like hbase:quota are assigned to their own
dedicated RegionServers.

-​ This could be done relatively trivially with balancer conditionals, and I’d challenge
you to write a usable cost function that could achieve the same.

-​ Theoretically this could be achieved through RS groups — but that’s a
management nightmare. Suddenly you own the operational burden of defining
groups for your user tables and system tables; groups that must be large enough
to have redundancy, but small enough to avoid being tremendously wasteful. It is
much simpler to have a balancer that will clearly prefer system table isolation,
while also having nothing extra to manage and nothing strictly blocking the
assignment of critical tables to any given server.

3.​ MetaTableIsolationConditional:

-​ Rejects RegionPlan proposals that colocate meta table replicas with user
tables.

-​ Further isolates hbase:meta to a dedicated RegionServer, independent of other
system or user tables.

-​ Much like the above, this could be achieved through RS groups, but I think
there’s a strong argument for this approach being simpler and better.

Benefits of Balancer Conditionals
-​ Simplicity: Developers and operators can define clear, easy-to-understand rules without

needing to configure or debug complex cost function multipliers.
-​ Precision: Removes ambiguity around balancing goals by separating "strong"

constraints (enforced by conditionals) from "soft" optimization goals (addressed by cost
functions).

-​ Extensibility: Adding new conditionals is straightforward and doesn't require adjusting
multipliers or rebalancing existing cost functions.

-​ Improved Debugging: Conditionals can provide detailed logging for why specific
RegionPlan decisions were rejected, improving debuggability and operability.

Implementation Overview

Adding Balancer Conditionals
1.​ Define Conditional Interface:

-​ Introduce an interface (e.g., BalancerConditional) with methods to evaluate
and reject invalid RegionPlan proposals.

Java

Java

public interface RegionPlanConditional {
 boolean isViolating(RegionPlan plan);
}

2.​ Integrate with StochasticLoadBalancer:

-​ Modify the balancer to evaluate conditionals alongside cost functions

public class StochasticLoadBalancer {

 public void balanceTable(BalancerClusterState) {
 // This is short hand for how the balancer works today
 RegionPlan regionPlan = getRandomRegionPlan();

 // We can evaluate the conditional violation count change caused by each
plan
 int conditionalViolationChange =
balancerConditionals.getViolationChange(regionPlan);

 // Then we can get the cost change of the region plan like we do today
 boolean costsImproved = doCostsImprove(regionPlan);

 boolean conditionalsImproved = conditionalViolationChange < 0;
 boolean conditionalsSimilarCostsImproved =
 conditionalViolationChange == 0 && costsImproved;
 if (conditionalsImproved || conditionalsSimilarCostsImproved) {
 accept(regionPlan); // plan looks good
 }
 }

}

3.​ Initial Conditionals:

-​ Add some initial conditionals for replica distribution, system table isolation, and
meta table isolation.

-​ Provide configuration keys to enable or disable each conditional.
-​ All of these conditionals will be disabled by default to maintain familiar behavior

by default.

Operational Changes

New Configuration Options
The following new configuration options would be introduced:

-​ hbase.master.balancer.stochastic.conditionals.isolateSystemTables:
set this to true to enable system table isolation

-​ hbase.master.balancer.stochastic.conditionals.isolateMetaTable: set
this to true to enable meta table isolation

-​ hbase.master.balancer.stochastic.conditionals.distributeReplicas:
set this to true to enable conditional based replica distribution

-​ hbase.master.balancer.stochastic.additionalConditionals: much like
cost functions, you can define your own RegionPlanConditional implementation and
install it here.

Backward Compatibility
-​ The proposed changes are backwards-compatible with existing configurations, and will

be turned off by default.
-​ Operators can gradually adopt conditionals by enabling them one at a time.
-​ Existing cost functions remain functional and are unaffected by these changes.
-​ All initial conditionals can be enabled in tandem without deadlock.

Conclusion
Introducing balancer conditionals would make the HBase balancing process:

-​ More predictable by separating strong constraints from optimization goals.
-​ Easier to configure by eliminating the need for complex multiplier tuning.
-​ More powerful by providing a clear framework for adding new balancing rules.

These changes would address long-standing issues with the balancer and lay the groundwork
for a more robust and maintainable balancing strategy. By adopting this proposal, HBase can
significantly improve its balancing logic and meet the needs of both traditional and modern
workloads.

Testing

Table Isolation

See below where we ran a new unit test, TestLargerClusterBalancerConditionals, and tracked
the locations of regions for 3 tables across 18 RegionServers:

1.​ 180 “product” table regions
2.​ 1 meta table region
3.​ 1 quotas table region

All regions began on a single RegionServer, and within 4 balancer iterations we had a well
balanced cluster, and isolation of key system tables.

Replica Distribution

Traditional Replica Cost Functions Don’t Work

Below, we have `replicated_table`, a table with 3 region replicas. The 3 regions of a given
replica share a color, and there are also 3 RegionServers in the cluster. We expect the balancer
to evenly distribute one replica per region per server across the 3 RegionServers, and can
watch our traditional replica cost functions fail to do so.

….omitting the meaningless snapshots between 4 and 27…

At this point, I just exited the test because it was clear that our existing balancer would never
achieve true replica distribution.

Balancer Conditionals Do Work

Below, we have `replicated_table`, a table with 3 region replicas. The 3 regions of a given
replica share a color, and there are also 3 RegionServers in the cluster. We expect the balancer
to evenly distribute one replica per server across the 3 RegionServers, and can watch balancer
conditionals do so successfully in approximately one minute on my local machine:

	Summary
	How the balancer works today
	A few dominating cost functions

	Proposal
	How Balancer Conditionals Could Fix This
	Decoupling Constraints from Cost Functions
	Examples of Balancer Conditionals in Action
	Benefits of Balancer Conditionals

	Implementation Overview
	Adding Balancer Conditionals

	Operational Changes
	New Configuration Options

	Backward Compatibility
	Conclusion
	Testing
	Table Isolation
	Replica Distribution
	Traditional Replica Cost Functions Don’t Work
	Balancer Conditionals Do Work

