EMBEDDED SOLUTION FOR BEDRIDDEN PATIENTS

A CAPSTONE PROJECT REPORT

Submitted in partial fulfillment of the
requirement for the award of the
Degree of

BACHELOR OF TECHNOLOGY
IN
ELECTRONICS AND COMMUNICATION ENGINEERING
by

GOUTAM JEERALA (19BEC7047)
ADDAGALLA DHANYA SREE (19BEC7100)

Under the Guidance of

Prof. M. Kalyan Chakravarthi

=< UNIVERSITY

SCHOOL OF ELECTRONICS ENGINEERING
VIT-AP UNIVERSITY
AMARAVATI- 522237

DECEMBER 2022

CERTIFICATE

This 1s to certify that the Capstone Project work titled “EMBEDDED
SOLUTION FOR BEDRIDDEN PATIENTS” that is being submitted by
GOUTAM JEERALA (19BEC7047) and ADDAGALLA DHANYA SREE
(19BEC7100) is in partial fulfillment of the requirements for the award of
Bachelor of Technology, is a record of bonafide work done under my guidance.
The contents of this Project work, in full or in parts, have neither been taken
from any other source nor have been submitted to any other Institute or
University for the award of any degree or diploma and the same is certified.

Prof. M. Kalyan Chakravarthi

Guide
The thesis is satisfactory/unsatisfactory
Internal Examiner External
Examiner
Approved by
PROGRAM CHAIR DEAN
B. Tech. ECE School Of Electronics

Engineering

ACKNOWLEDGEMENTS|

We would like to express our special thanks of gratitude to our teacher Prof.M.
Kalyan Chakravarthi who gave us the golden opportunity to do this wonderful project
"EMBEDDED SOLUTION FOR BEDRIDDEN PATIENTS”. We would like to thank our
subject teacher again for guiding us through the reviews whom without this project would not
have been completed and our knowledge of engineering application would not have
improved. Lastly, we would like to thank our SENSE school respective DEAN for giving us
an opportunity to carry out our studies in the University.

GOUTAM JEERALA
DHANASREE ADDAGALLA

ABSTRACT

In the 21st century, every day new inventions are being developed, launched, and
marketed to human beings. Research and developments in technology and healthcare cause a
significant increase in the quality of life and average life expectancy. As the statistical
research and forecasts tell us, it is not possible to ignore the aging population, resulting in the
need for laborious caregiving. Caregiving is highly costly also; there is a big injury rate and
days lost in caregiving facilities due to the need for a highly physical workforce.

Measurement and control of pressure play an important role in different fields of
Science and Technology. Also, it becomes essential to monitor the real-time weather
condition of one place to another place. In this paper, we present the Cloud-Based monitoring
and measurement of pressure using Arduino UNO. The Uno with Cable is a microcontroller
board base on the ATmega328. It has 14 digital input/output pins (of which 6 can be used as
PWM outputs); 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power
jack, an ICSP header, and a reset button. A force-sensing resistor is used for measuring
pressure.

Measured parameters are sent to the Cloud to ThingSpeak through NodeMCU.
Pressure measurements made in real time are shown graphically. The software is developed
in the Arduino integrated development environment (IDE).

TABLE OF CONTENTS

S.No | Chapter | Title Page
. Number
1. Acknowledgment 3
2. Abstract 4
3. List of Figures and Table 6
4. 1 Introduction 7
1.1 Objectives 7
1.2 Background and Literature Survey 8
1.3 Organization of the Report 8
5. 2 EMBEDDED SOLUTION FOR 9
BEDRIDDEN PATIENTS
2.1 Proposed System 9
2.2 Working Methodology 1
2.3 Standards 11
24 System Details 12
2.4.1 Software 12
2.4.2 Hardware 13
6. 3 Cost Analysis 19
3.1 List of components and their cost 19
7. 4 Results and Discussion 20
8. 5 Conclusion & Future Works 22
9. 6 Appendix 23
10. 7 References 28

List of Tables

Table Title Page No.
1 Cost Analysis 19
List of Figures
Figure Title Page No.
No.
| System Block diagram 10
2 Overview of Embedded System 10
3 Arduino IDE 12
4 ThingSpeak Analysis 12
5 Detailed graph information of a Force sensor 13
6 Arduino UNO 13
7 ATmega 328 Microcontroller 15
8 Node MCU 16
9 Node MCU (Arduino IDE) 17
10 Force Sensor 18
11 Hardware setup 20
12 Arduino IDE output and readings 21
13 Arduino IDE output and readings 21
14 Future Analysis 22

CHAPTER 1

INTRODUCTION

Being bedridden and bed rest are two concepts that appear to be similar, however,
they are quite different. Bed rest refers to a limited period of rest as prescribed by a doctor or
as deemed necessary because of an acute illness whereas being bedridden has a more
negative connotation and is described as a final state that gradually leads to (social) death,
according to Zegelin2. According to “Training Material — PT Protocol for Bedridden
Patients” a bedridden patient, for various reasons, has to stay in bed for a long period.

Factors such as genetic disorders, work stress, and unhealthy diet can increase the
probability of illness. In addition, as our population ages, the demand for health care in the
elderly population increases. Subsequently, with increasing numbers of patients, physicians
and hospitals come increasing demands. Additionally, increasing healthcare costs make
treatment and health screening out of reach for many patients. Remote patient monitoring has
been proposed to meet this increased demand. It has also become more popular as a means of
simplifying the healthcare process. Remote patient monitoring can not only meet the
increased demand but also increase overall efficiency by, for example, reducing travel and
waiting time and decreasing the spread of infectious diseases in doctor’s waiting rooms.

Any patient monitoring system consists of signal acquisition and a processing section
to record the vital data from the patient’s body. The patient monitoring system updates the
physician about the patient’s health status. In this context embedded systems play a vital role
in IoT; these embedded systems use an admixture of digital and analog subsystems in
gathering information from sensors.

1. Objectives

The following are the objectives of this project:
e To design an efficient system that can continuously monitor pressure changes.
e This Embedded system constantly checks the state of the patient after frequent
intervals. It warns through the android application and suggests that action is
now required if there is no value received or when it reached the maximum
limit.

e When the patient is having an appointment with the doctor, previous details of
his condition or a summary of his condition over the past few weeks/days can
be shared which will be stored in the cloud.

e Sensors interfaced with Arduino constantly monitor the pressure changes of
the patient.

0. Background and Literature Survey

Embedded solutions for bedridden patients are systems that are designed to improve
the quality of life and care of those who are unable to leave the bed. These systems typically
incorporate the use of technology to enable communication and interaction between the
patient and those providing care. One type of embedded solution for bedridden patients is the
telehealth system. This system enables remote monitoring of the patient’s health and provides
a two-way communication link between the patient and their care provider.

Telehealth systems can include features such as vital sign monitoring, remote
diagnostics, appointment scheduling, health records management, and other features. Another
type of embedded solution for bedridden patients is the robotic system. These systems are
designed to assist with a variety of tasks including mobility, communication, and social
interaction. Robotic systems are equipped with sensors and cameras to enable them to interact
with their environment and the patient.

Additionally, they may be programmed to perform specific tasks such as turning on
lights, providing medication reminders, and providing companionship. Finally, embedded
solutions for bedridden patients may also include assistive technology such as voice-activated
devices, sensor-based systems, and computer-based systems. These systems are designed to
enable the patient to interact with their environment and to receive

Bedridden patients who are unable to move from their bed due to either an underlying
medical condition or an injury. Bedridden patients have a greater risk of developing a range
of
medical complications, such as pressure sores, deep vein thrombosis, and muscle atrophy. In
order to provide better care for these patients, it is important that they are able to remain as
comfortable and active as possible.

This can be accomplished through the use of embedded solutions that allow for
remote monitoring and interaction with the patient. This literature review and analysis will
focus on the use of embedded solutions for bedridden patients and their potential benefits.
Literature Review Recent studies have shown that embedded solutions have the potential to
improve the care of bedridden patients.

One study conducted by Wang et al. (2020) evaluated the use of a wireless
telemonitoring system to monitor bedridden patients in a home care setting. The system was
used to collect patient data (such as heart rate, respiration rate, and blood pressure) and
transmit it wirelessly to a remote monitoring station. The results of the study showed that the
system was able to provide accurate and timely data and that it was able to improve the
quality of care for the patient.

1.3 Organization of the Report

The remaining chapters of the project report are described as follows:
e Chapter 2 contains the proposed system, methodology, hardware and software
details.
e Chapter 3 gives the cost involved in the implementation of the project.

Chapter 4 discusses the results obtained after the project was implemented.
Chapter 5 concludes the report.

Chapter 6 consists of codes.

Chapter 7 gives references.

CHAPTER 2
EMBEDDED SOLUTION FOR BEDRIDDEN PATIENTS

This Chapter describes the proposed system, working methodology, software and hardware
details.

2.1 Proposed System

In the proposed method we are using force to detect the presence of a patient. Here we are
using Arduino as the main controller for it we are interfacing the force sensors. If the patient
doesn’t move or if there is no change in force sensor value, then in the serial monitor we get
an alert as “Alert! Patient is not moving”. If there is no force detected then it will display “No
patient on bed”. The sensor's data will be sent to the thingspeak server through NodeMCU.

The following block diagram (figure 2) shows the system architecture of this project.

Force sensors

Power supply

Arduino

Figure 1 System Block Diagram

User interface

L 4

NodeMCU

Inputs

"
Embedded system

Software

Hardware

Link to other systems

Figure 2 Overview of Embedded system

Output

10

2.2 Working Methodology

The system has two sections, hardware, and software. Hardware consists of Ardunio, Node
MCU, and force sensors. Arduino is connected to force sensors which constantly monitor the
pressure of the patient. These force sensors are attached to the patient's body parts (1 for the
head, 2 for the left and right shoulders, 1 for the hip, and 2 for the left and right legs). Now
the pressure is calculated and analysed for every six iterations and alerts the condition of the
patient.

2.3 Standards

Various standards used in this project are

Secure and reliable data storage:

Thinkspeak is a cloud-based data storage system that provides secure and reliable
storage. It uses an advanced encryption system to protect the data stored in its cloud, and also
offers a range of additional features to ensure data security and reliability. These features
include two-factor authentication, secure access control, and data integrity checks.

Easy-to-use interface:
The device we used has an intuitive and user-friendly interface to facilitate the
monitoring of the bedridden patient.

Robust connectivity:

The ESP8266 is a highly integrated Wi-Fi-enabled microcontroller with robust
connectivity. It has a built-in Wi-Fi module, which can be used to connect to any compatible
Wi-Fi network or create an Access Point. The NodeMCU firmware also comes with a built-in
TCP/IP stack, which allows it to receive and send data over the internet. It also has a USB
port, which can be used to connect it to a computer or other peripheral devices.

Automated alerts:
This device is able to provide automated alerts to relevant personnel in the event that
the patient is still in bed without movement, or No patient is on the bed for easy analysis.

2.4 System Details

This section describes the software and hardware details of the system:

2.4.1 Software Details

Arduino IDE

The Arduino IDE (Integrated Development Environment) is used to write the computer code
and upload this code to the physical board. The Arduino IDE is very simple and this
simplicity is probably one of the main reasons Arduino became so popular. We can certainly
state that being compatible with the Arduino IDE is now one of the main requirements for a
new microcontroller board.

11

Upload button

Serial Monitor button

Compilation
button
. i)
i) e
}
the :!(; furct r and o/ ar g o
t
ariscat . rp——
oL M) 4
ey ve L e ' making the o LOW
)
Figure 3 Arduino IDE
ThingSpeak

ThingSpeak is open-source software written in Ruby which allows users to communicate with

internet-enabled devices. It facilitates data access, retrieval and logging of data by providing
an API to both the devices and social network websites

CAThingSpeak™
T =
Channel Stats
- == - - e
EBedridde L ents EBedridden Patients

[TR
o
Ferea,_ i
Pie——
)

(= I FReld 4 Chaat

LERTER]
e et A
——]

o sinier §
——
A

e

Figure 4 ThingSpeak Analysis

12

Bedridden Patients

force_sensor_2:73

o

§' 50 Fri Dec 23 2022

2 12:05:02 GMT+0530

3|

[}

2

Lo

0
11:50 11:55 12:00 12:05
Date

ThingSpeak.com

Figure 5 Detailed graph information of a force sensor

2.4.2 Hardware Details

As shown in Figure 1 we have various hardware components being used in this

system. The details of each component are as follows

Arduino UNO

DC Power Jack

@ Voltage Regulator & USB Port
<‘|:I]

—_ —1 Reset Button

e ATmegalb

Crystal Oscillator
i j 12C Communication

Analog Reference Voltage
Ground

Power Source

ATmega328 i

Analog Pins

Digital Pins

J |
. o

Serial Communication

[ATWAZ HT 30N - 32" OMINGHY' AR e-H

In-Circuit Serial
Programming Header 5V ON Indication LED

Arduino UNO

13

Figure 6 Arduino UNO

Arduino Uno is a microcontroller board developed by Arduino. cc which is an open-source
electronics platform mainly based on the AVR microcontroller Atmega328.

The first Arduino project was started at Interaction Design Institute Ivrea in 2003 by
David Cuartillas and Massimo Bonzi with the intention of providing a cheap and flexible way
to students and professionals for controlling a number of devices in the real world.

The current version of Arduino Uno comes with a USB interface, 6 analog input pins,
14 1/0 digital ports that connect with external electronic circuits. Out of 14 1/O ports, 6 pins
can be used for PWM output. It allows the designers to control and sense the external
electronic devices in the real world

This board comes with all the features required to run the controller and can be
directly connected to the computer through a USB cable that is used to transfer the code to
the controller using IDE (Integrated Development Environment) software, mainly developed
to program

Arduino. IDE is equally compatible with Windows, MAC or Linux Systems;
however, Windows is preferable to use. Programming languages like C and C++ are used in
IDE. Apart from USB, a battery or AC to DC adapter can also power the board.

Arduino Uno boards are quite like other boards in the Arduino family in terms of use
and functionality, however, Uno boards don’t come with FTDI USB to Serial driver chip.
There are many versions of Uno boards available, however, Arduino Nano V3 and Arduino
Uno are the most official versions that come with an Atmega328 8-bit AVR Atmel
microcontroller where RAM memory is 32KB.

Features of Arduino

Arduino Uno comes with a USB interface i.e. A USB port is added on the board to
develop serial communication with the computer. Atmega328 microcontroller is placed on
the board that comes with a number of features like timers, counters, interrupts, PWM, CPU,
and I/O pins and is based on a 16MHz clock that helps in producing more frequency and
number oF instructions per cycle.

It is an open-source platform where anyone can modify and optimize the board based
on the number of instructions and tasks they want to achieve.

There are 14 1/0O digital and 6 analog pins incorporated in the board that allows the
external connection with any circuit with the board. These pins provide flexibility and ease of
use to the external devices that can be connected through these pins.

There is no hard and fast interface required to connect the devices to the board.
Simply plug the external device into the pins of the board that are laid out on the board in the
form of the header.

The 6 analog pins are marked as A0 to A5 and come with a resolution of 10 bits.
These pins measure from 0 to 5V, however, they can be configured to the high range using
the analogReference () function and AREF pin.

Only 5 V is required to turn the board on, which can be achieved directly using a USB
port or external adapter, however, it can support external power sources up to 12 V which can
be regulated and limited to 5 V or 3.3 V based on the requirement of the project. 13KB of
flash memory is used to store the number of instructions in the form of code.

14

i) Node MCU

NodeMCU is an open-source firmware and development kit that plays a vital role in

Pin#1: pco e 4= Pin #28:PC5
+= Pin #27:PC4
+= Pin #26:PC3
<= Pin #25:pc2
= Pin # 24:pc1
+=$Pin #23:PC0O
+=Pin # 22:GND

«$Pin # 21: Aref

I~ Pin#2: ppo =
Pin#3: PD1 4=
Pin#4: PD2 e
Pin # 5:

- Pin#6: PD4 e
Pin#7: vcce=

Port D

FD3 =p

Pin# 8: GNDe=p

Pin#9: PB6 4=
PortB<d '™
Pin#10:PB7 +=»

gzeebaw) v

+=Pin # 19:rB5
= Pin # 18:pB4
= Pin#17:PB3
*=Pin # 16:PB2
+=Pin # 15:PB1

Pin#11!p05”

PortD Pin #12: pp6 e

Pin#13: pD7 4=

Port B { Pin#14: pBO e=»

Atmega328 Microcontroller

Figure 7 Atmega328 Microcontroller

designing your own IoT product using a few Lua script lines.

Multiple GPIO pins on the board allow you to connect the board with other peripherals and

+=*Pin # 20:AvcC

"

PortC

» Port B

are capable of generating PWM, 12C, SPI, and UART serial communications.

e The interface of the module is mainly divided into two parts including both Firmware
and Hardware where the former runs on the ESP8266 Wi-Fi SoC and later is based on
the ESP-12 module.

The firmware is based on Lua — A scripting language that is easy to learn, giving a simple

programming environment layered with a fast-scripting language that connects you with a

well-known developer community.

15

Mounting Hole

ESP8266

GND
VUSB

GND
V3

GMND
GND

Vin

V3

CH340G

USB Jack FLASH

Figure 8 Node MCU

open-source firmware gives you the flexibility to edit, modify and rebuilt the existing module
and keep changing the entire interface until you succeed in optimizing the module as per your
requirements.

e USB to UART converter is added to the module that helps in converting USB data to
UART data which mainly understands the language of serial communication.

Instead of the regular USB port, the MicroUSB port is included in the module that connects it
to the computer for dual purposes: programming and powering up the board.

e The board incorporates a status LED that blinks and turns off immediately, giving you
the current status of the module if it is running properly when connected to the
computer.

The ability of the module to establish a flawless Wi-Fi connection between two
channels makes it an ideal choice for incorporating it with other embedded devices like
Raspberry Pi.

16

© A0 D1 @ [E——y
Oc D2 @ [y

:UU D3® — 0]
S3

©s2
®s1 oononn
©®sc e s m
© so h2]
Ok g 13]
g 53]
3V

Oen " mm
ORST : Pin Number to use in
OG BEREREN

[|
o\”N B EREREE

- LoLin

Arduino IDE

Figure 9 Node MCU(Arduino IDE)

iii) Force Sensor

A Force Sensing Resistor, also known as a Force Sensor, or simply an FSR, is a
simple and inexpensive sensor designed to measure physical pressure, squeeze, and weight. It
can be found in a variety of portable electronics, including electronic drums, handheld
gaming devices, and mobile phones.

This sensor is excellent at measuring pressure, but not so accurate at estimating how
much weight is on it. So, if you just want to know “whether the sensor has been squeezed or
pressed and how hard,” it could be a good choice for your next force-sensing project. The
patent for the technology used in FSRs is owned by Interlink Electronics, which has been in
business since 1985. The most common types of FSR that you will encounter are Interlink
FSR-402 and FSR-406.

17

Figure 10 Force Sensor

An FSR is simply a variable resistor whose resistance varies in response to pressure
applied to the sensing area. It is made up of several thin, flexible layers. When squeezed,
more of the carbon elements that normally offer resistance are brought into contact with the
conductive traces, thereby lowering the resistance. There is a wide selection of FSRs
available, each with its own unique size, shape, and sensing range.

The majority of FSRs have circular or rectangular sensing areas. Rectangular FSRs
are ideal for wide-area sensing, whereas small circular sensors can provide higher accuracy.

18

3.1

CHAPTER 3

COST ANALYSIS

List of components and their cost

The costs of the various components used in this project are given below in Table 3.1.

Table 3.1 List of components and their costs

COMPONENT COST
Arduino Uno % 1000
Node MCU - ESP8266 X 1270
Force Sensor - 6 Units % 5400
Miscellaneous X 1500
TOTAL 9170

19

CHAPTER 4

RESULTS AND DISCUSSIONS

a. Sensor Readings
The microcontroller unit was able to transmit the values collected from the sensors by
the system depicted in figure 11 to the Arduino UNO, which is shown in Figures 12 and 13.

Figure 11 Hardware Setup

20

b. Integration Hardware and Software

Fig 12 and fig 13 depict the values of force and alerts about the status of the patient on
the bed

& test_code | Arduino IDE 2.0.3
File Edit Sketch Too p

1 UTF8 Asduing Uno

Q Search | ™ [+] @ W -]] @ ENG

IN

Figure 12 Arduino IDE output and readings

& test_code | Arduino IDE 2.0.3
File Edit Sketch Tool

§* Arduino Uno

lesi_code.ino

Minimum

Maximum

oo MO PIomoce @8
Figure 13 Arduino IDE readings and output

21

CHAPTER 5

CONCLUSION AND FUTURE WORK

The embedded solution for bedridden patients has the potential to revolutionize the
way in which such patients are taken care of. Providing a comprehensive range of medical
assistance. As this system can help to provide a better quality of life to those unable to move.
Not only does it offer convenience, but it also helps to reduce the burden of care significantly
on medical professionals, and caregivers and it provides cloud information to monitor the
status of bedridden patients Ultimately, it is an innovative solution that can help to improve
the lives of those who are bedridden and in need of assistance.

A lot can be done in this area. There is a large scope that could be ventured, and new
designs or systems could be made to improve the conditions and efficiency of the solution
that we created by using force sensors. We can figure out if in the near future any of the
components might need attention such as motors to help the patients to move without the
physical acquaintance of the doctors.

Figure 14 Future Analysis

22

CHAPTER 6

APPENDIX

Arduino Code

#include<SoftwareSerial.h>
SoftwareSerial nod(3,4);

int fs1[6], fs2[6], fs3[6], fs4[6], fs5[6], fs6[6]; //Variable declaration
mntsl=0,s2=0,s3=0,s4=0,s5=0,s6=0;

void setup() {
Serial.begin(9600); //Baud rate setting
nod.begin(9600);

}

void loop() {

//force sensor reading

for (inti=0;1<6;1++) {
fs1[i] = analogRead(A0);
fs2[i] = analogRead(Al);
fs3[i] = analogRead(A2);
fs4[i] = analogRead(A3);
fs5[i] = analogRead(A4);
fs6[i] = analogRead(AY);

//Average Calculation
sl =s1 + fs1[i];
s2 =s2 + s2[i];
s3 =s3 + fs3[i];
s4 = s4 + fs4[i];
s5 =s5 + fs5[i];
s6 = s6 + fsO[1];

//Monitor Printing of force sensor values
Serial.println("Force Sensorl : " + String(fs1[i]));
Serial.println("Force Sensor2 : " + String(fs2[1]));
Serial.println("Force Sensor3 : " + String(fs3[i]));
Serial.println("Force Sensor4 : " + String(fs4[i]));
Serial.println("Force Sensor5 : " + String(fs5[i]));
Serial.println("Force Sensor6 : " + String(fs6[1]));
Serial.println(i);

delay(1000);

23

}

//Calculation of minimum and maximum values of the arrays
int Max1 = fs1[0];
int Minl = fs1[0];
int Max2 = s2[0];
int Min2 = £s2[0];
int Max3 = s3[0];
int Min3 = £s3[0];
int Max4 = fs4[0];
int Min4 = fs4[0];
int Max5 = s5[0];
int Min5 = £s5[0];
int Max6 = fs6[0];
int Min6 = fs6[0];
for (int 1 = 0; 1 < (sizeof(fs1) / sizeof(fs1[0])); i++)
{
Max1 = max(fs1[i], Max1);
Minl = min(fs1[i], Minl);
¥
for (int 1 = 0; 1 < (sizeof(fs2) / sizeof(fs2[0])); i++)
{
Max?2 = max(fs2[i], Max2);
Min2 = min(fs2[i], Min2);
}
for (int 1 = 0; 1 < (sizeof(fs3) / sizeof(fs3[0])); i++)
{
Max3 = max(fs3[i], Max3);
Min3 = min(fs3[i], Min3);
¥
for (int 1 = 0; 1 < (sizeof(fs4) / sizeof(fs4[0])); i++)
{
Max4 = max(fs4[i], Max4);
Min4 = min(fs4[i], Min4);
}
for (int 1 = 0; 1 < (sizeof(fs5) / sizeof(fs5[0])); i++)
{
Max5 = max(fs5[i], Max5);
Min5 = min(fs5[i], Min5);
}
for (int 1 = 0; 1 < (sizeof(fs6) / sizeof(fs6[0])); i++)
{
Max6 = max(fs6[i], Max6);
Min6 = min(fs6[i], Min6);
}

24

//Monitor Printing of Minimum and Maximum Values
Serial.println("Minimum Value of Force sensorl : "+String(Minl1));
Serial.println("Maximum Value of Force sensorl : "+String(Max1));
Serial.println("Minimum Value of Force sensor2 : "+String(Min2));
Serial.println("Maximum Value of Force sensor2 : "+String(Max2));
Serial.println("Minimum Value of Force sensor3 : "+String(Min3));
Serial.println("Maximum Value of Force sensor3 : "+String(Max3));
Serial.println("Minimum Value of Force sensor4 : "+String(Min4));
Serial.println("Maximum Value of Force sensor4 : "+String(Max4));
Serial.println("Minimum Value of Force sensor5 : "+String(Min5));
Serial.println("Maximum Value of Force sensor5 : "+String(Max5));
Serial.println("Minimum Value of Force sensor6 : "+String(Min6));
Serial.println("Maximum Value of Force sensor6 : "+String(Max6));

delay(1000);

//Monitor Printing of sensor average values
s1=s1/6;82=52/6;83=583/6;8s4=54/6;s5=585/6;86=56/6;
Serial.println(" Average of Force Sensorl : " + String(s1));
Serial.println("Average of Force Sensor2 : " + String(s2));
Serial.println(" Average of Force Sensor3 : " + String(s3));
Serial.println("Average of Force Sensor4 : " + String(s4));
Serial.println(" Average of Force Sensor5 : " + String(s5));
Serial.println(" Average of Force Sensor6 : " + String(s6));

//Condition Checking
if((Minl <= sl <=Max1) && (Min2 <= s2 <=Max2) && (Min3 <= s3 <=Max3) && (Min4
<=s4 <=Max4) && (Min5 <= s5 <=Max5) && (Min6 <= s6 <=Max6) && (s1 > 10 || s2 >
10][s3>10(s4>10|s5> 10| s6 > 10)){
Serial.println("Alert! Patient is not Moving");
¥
if(s1 <10 && s2 <10 && s3 <10 && 54 <10 && 5 <10 && s6 < 10){
Serial.println("No Patient on Bed");
¥
nod.print("!"+String(s1)+"@"+String(s2)+"#"+String(s3)+"$"+String(s4)+"%"+String(s5)+
"A"+String(s6));

//Resetting Values

s1=0;s2=0;s3=0;s4=0;s5=0;s6=0;
delay(1000);

25

Nod Thingspeak Code

#include <ESP8266WiFi.h>

#include "secrets.h"

#include "ThingSpeak.h"

/l

String k, v;

char ssid[] = SECRET _SSID; // your network SSID (name)

char pass[] = SECRET_PASS; // your network password

int keyIndex = 0; // your network key Index number (needed only for WEP)
WiFiClient client;

unsigned long myChannelNumber = SECRET CH_ID;
const char * myWriteAPIKey = SECRET WRITE APIKEY;

void setup() {

Serial.begin(9600);

Serial.println("Working");

M @23#12812%22°23

if (WiFi.status() = WL _CONNECTED) {
Serial.print(" Attempting to connect to SSID: ");
Serial.printin(SECRET _SSID);
while (WiFi.status() != WL_CONNECTED) {

WiFi.begin(ssid, pass); // Connect to WPA/WPA2 network. Change this line if using

open or WEP network
Serial.print(".");
delay(5000);
}

Serial.println("\nConnected.");
b
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo native USB port only
}
// WiFi.mode(WIFI_STA);
ThingSpeak.begin(client); // Initialize ThingSpeak
}

void loop() {
if (Serial.available()) {

k = Serial.readString();
Serial.println(k);
/I r=k.c_str();
int m = k.length();
Serial.println(m);
if (K[0] = 1) {

26

}

}

}

int p = k.indexOf('@");
int q = k.indexOf('#");
int r = k.indexOf('$");
int s = k.indexOf('%");
int t = k.indexOf('"");

String a = k.substring(1, p);
String b = k.substring(p + 1, q);
String ¢ = k.substring(q + 1, 1);
String d = k.substring(r + 1, s);
String e = k.substring(s + 1, t);
String f = k.substring(t + 1, m);

Serial.println(a);
Serial.println(b);
Serial.println(c);
Serial.println(d);
Serial.println(e);
Serial.printIn(f);
ThingSpeak.setField(1, a);
ThingSpeak.setField(2, b);
ThingSpeak.setField(3, c);
ThingSpeak.setField(4, d);
ThingSpeak.setField(5, e);
ThingSpeak.setField(6, f);
int x = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

if (x ==200) {

Serial.println("Channel update successful.");
}
else {

Serial.println("Problem updating channel. HTTP error code " + String(x));

}

27

28

REFERENCES

[1] Arif. M. Sreevas. S. Nafseer. K. and Rahul. R. (2012), 'Automated online Blood bank
database', India Conference (INDICON), Annual IEEE, Print ISBN: 978-1-4673-2270-6, pp.
012 -017.

[2] Bing-Nan Li, Taipa Ming-Chui Dong, and Vai, M.1. (2006), From Codabar to ISBT 128:
Implementing Barcode Technology in Blood Bank Automation System', 27th Annual
International Conference of the Engineering in Medicine and Biology Society, [IEEE-EMBS,
pp. 542-545.

[3] Ibrahim. M and M. Youssef (2012), 'CellSense: An Accurate Energy-Efficient GSM
Positioning System Vehicular Technology, IEEE Transactions on Volume: 61, Issue: 1, ISSN:
0018-9545, pp. 286 - 296.

[4]Dr.A.Sabanayagam, G.Anish Girija,” DESIGN AND MODELING OF MOBILE
HEALTH MONITORING SYSTEM?”, International Journal of Innovations in Scientific and
Engineering Research (IJISER),vol4,no 2,pp.63- 65,2017.

[5] S. M. Mahalle, P. V. Ingole, “Design and Implementation of Wireless Body Area Sensor
Network Based Health Monitoring System”, International Journal of Engineering Research &
Technology, Vol. 2 Issue 6, pp. 105- 113, June 2013

[6] Sonam Khedkar, Swapnil Thube, “Real Time Databases for Applications”, International
Research Journal of Engineering and Technology (IRJET) Real Time Databases for Applications,
Volume: 04 Issue: 06 | June -2017

[7] R. Kumar; M. Pallikonda Rajasekaran, An [oT based patient monitoring system using
raspberry Pi, 2016 International Conference on Computing Technologies and Intelligent Data
Engineering (ICCTIDE'16).

[8] Sarfraz Fayaz Khan, Health care monitoring system in the Internet of Things (IoT) by
using RFID, 2017 6th International Conference on Industrial Technology and Management
(ICITM)

29

