
C Basics
Here are some basics on C that will help as you begin to use it more frequently. You might not
need to be able to recall all the information from memory, but it is important to remember that
certain characteristics exist to better design solutions or understand bugs.

Data Types
C offers various data types for you to use, it is important to remember their size as well as how
that size limits what they can represent (i.e. integers overflowing or signed vs unsigned) This
site shows different types, size, and minimum/maximum in tables.

Something you may notice is that C doesn’t have a boolean type, instead using 0 to represent
false and 1 (or not 0) as true. PintOS does define a boolean type, allowing you to use the true
or false keywords while working in it.

Operators
Operators are mostly the same as Java and many other programming languages. The
assignment operator is still = and used to assign a value to a variable. The supported math
operators are +, -, *, /, and %. +=, -=, *=, etc. are also allowed. Logical operators are also the
same, with AND (&&), OR (||), and NOT (!). You can also make comparisons in the same way
with >, <, >=, <=, ==, and !=.

C also allows you to use bitwise operators that treat variables like a collection of bits. The
bitwise operators are explained well with examples here.

Pointers
One of the most challenging parts of C is getting accustomed to working with pointers.
Remember that, behind a few levels of abstraction, variables are just values stored in a known
spot in memory and that spots in memory are usually denoted by some long hexadecimal value.

Simply put, a pointer is just a variable that holds the address of another variable. Defining a
pointer is done by declaring what data type the variable you want to point to is and then naming
the variable, with the name starting with *.

https://www.tutorialspoint.com/cprogramming/c_data_types.htm
https://www.tutorialspoint.com/cprogramming/c_data_types.htm
https://en.wikipedia.org/wiki/Bitwise_operations_in_C

Note: Although it is syntactically correct to just define the pointer as “int *val;”, you should
always initialize your pointers to null. It is good practice and may save you from random
memory bugs in your projects.

When working with pointers, two important symbols are * and &. The asterisk (aka *)
dereferences a pointer, which means that it reads the data at the memory address specified in
the pointer (i.e. it will give you the actual data). The ampersand (aka &) gives the address of a
variable (pointer or not). With these two together, you can effectively store and retrieve data in
pointers.

When using pointers, always check to ensure that they are not null before using them.
Dereferencing a null pointer will cause a segmentation fault and cause the program to stop (plus
they’re just annoying).

For some simple examples on defining pointers and seeing how * and & affect what is returned,
check out this site.

Pointer Arithmetic
Pointer arithmetic lets you add or subtract to/from a pointer to either move it to the next or
previous memory location. This is done simply by using ++ or -- on a pointer variable (without
dereferencing).

https://www.tutorialspoint.com/cprogramming/c_pointers.htm

This can be done once or iteratively and, among other things, can be used to iterate over arrays
(because arrays are stored sequentially in memory) and strings (because C does not have
objects, so strings in C are really just a pointer to an array of chars).

An important note with pointer arithmetic is that ++ will increment by the size of the data type
that the pointer points to. So if it is a char pointer, ++ will increment by one byte, but if it is an int
pointer, ++ will increment by 4 bytes.

Strings
Strings in C are actually just pointers to arrays of chars. They end with null terminators (the
value 0) in order to signal that the string has ended. This means that there are several
considerations to make when working with strings. We can use this example to make it easier to
visualize.

This string is initialized using char *str = “string”;. The length of the string is 6, as we expect, but
the actual length of the actual array is 7 (indexes 0 to 6).

This means that we cannot == strings, nor can we use string.equals(). To verify string equality,
you have to iterate over the two strings you want to compare and compare char by char until the
null-terminator.

You’ll notice that iteration is required when it comes to working with strings (comparing them,
copying them, finding the length), but fortunately the string library (string.h) defines functions to
do most of these tasks for you. Check this site for some of the most useful string.h functions, but
feel free to find the rest of the functions and use the man pages to learn more about string
manipulation.

https://www.cs.bu.edu/teaching/cpp/string/cstring/

Structs
C does not have objects, but allows you to create structs, which act similar to objects in the
sense that they define a container to hold a certain set of variables in a certain order. In order to
be as space efficient as possible, its best to define long variables first and short variables last.

There are two ways to access the variables within a struct, depending on if you have the struct
itself or a pointer to the struct. If you have the actual struct, you get a certain variable using
struct_name.variable_name (a dot operator). If you have a pointer to the struct, you get
variables using struct_name->variable_name (the arrow operator).

For more information on structs, including how to define structs, check out this site.

Dynamic Memory
Declaring an array is easy when you know the exact size of it, however, if you don’t know the
exact size and need to define the size at runtime, you will have to allocate memory dynamically.
This is done with malloc() or calloc() (their function is similar, except that malloc does not
initialize the allocated range). Malloc and calloc both return pointers to the beginning of the
allocated space, meaning that you will need a pointer to store the starting address.

C gives you the freedom to allocate memory as you would like, however this also means that it
does not have a garbage collector to deallocate the memory when it is no longer in use. To
avoid memory leaks, you as the programmer are required to free allocated memory using free().

Allocating space and never freeing it results in a memory leak, which is undesirable. It can be
difficult to manage allocated space, so unless it is absolutely necessary, it’s advisable to avoid
using malloc or calloc and just store variables on the stack.

You do know how to store variables on the stack! Remember that a simple variable assignment
like int val = 5; will store variables onto the program stack. This is opposed to using
malloc/calloc, which will give you an address from the heap.

Conditionals
Conditionals in C use the same syntax as conditionals in Java, make sure to utilize the correct
one in different scenarios (e.g. for loop vs while loop, switch statement vs if/else chain, etc.).

https://www.tutorialspoint.com/cprogramming/c_structures.htm

Functions and Include Statements
C allows you to write your own functions and use them in any order, so long as the declaration
comes before it is first used. Functions have two parts to them, the function declaration and the
function definition. The function declaration is one line that has the return type, function name,
and type of each parameter. The function definition specifies what that function does. It has the
return type, function name (must match), parameter types and names (order of data types must
match), and function body (the actual code) to specify what the function will do.

Function declarations can either be done at the top of the .c file, after the include statements
and before the code, or separately in a .h file, a header file. If you choose to define the function
separately in a header file, the file must be included (using an include statement) at the top of
the .c file.

Header files are not only used for function declarations, they are also used to store constants
and system-wide global variables, among other things. Check out this page for more on header
files and this page for more on functions in C.

`argv` and `argc`
The special function `main()` is the entry point of a C program. This function will most often use
the predefined parameters `int argc()` and `char *argv[]`.

You may recall that Java’s main method signature looks like this:
`public static void main(String[] args)`
Where `args` is an array of Strings containing the arguments passed to the program.

Similarly, `char *argv[]` or `char **argv`, which stands for “argument vector”, is an array storing
strings representing the arguments passed to the program from the host environment. Most
often, this will mean the command line arguments you specify when you run the program.

For example, when you run `fib` in the command line using the arguments:

`fib 5 extra_args even_more_extra_args`

Then `argv` will be an array of char pointers that, when read as strings, look like:
`[“fib”, “5”, “extra_args”, “even_more_extra_args”]`
(By convention, the first argument is the name of the program)

These arguments can be accessed using `argv[0]`, `argv[1]`, and so on.

https://www.tutorialspoint.com/cprogramming/c_header_files.htm
https://www.tutorialspoint.com/cprogramming/c_functions.htm

But what is `argc` for? Remember that unlike Java’s `String[] args` parameter, C’s arrays are not
objects. Thus, C arrays do not have fancy features like a `length` property or out-of-bounds
checking. Instead, we simply have an `argc` parameter, which stands for “argument count”, that
represents the number of arguments in the array pointed to by `argv`.

So, the example we have above will have `argc` be equal to `4`, and the last element can be
accessed using `argv[3]`. We should not access the array beyond the last element, or we may
have unexpected behavior.

Created by Edén Garza, August 2020, Updated September 2022 (argv, argc).

