
Overview
This document covers common patterns in time series analysis, and implementation in certain
libraries.

Here we separate time series functionalities into two categories:

(1)​Data manipulation. These are relational-like functionalities on time series data, such as
join, window, aggregation and etc.

(2)​Time series models and techniques. These are specific stats and ML techniques used
on time series data, such as AR, ARMA, ARIMA and etc.

This is similar to Spark SQL vs MLlib and pandas vs statsmodels, the former is often used for
data cleaning and prepare inputs for the latter.

This documentation focus on functionalities in category (1).

This doc currently covers the following libraries:

●​ Spark SQL
●​ Pandas
●​ Flint (Time series library on Spark): https://github.com/twosigma/flint
●​ Kdb (A widely used time series database in finance): http://code.kx.com/q/

Gourav Sengupta: Asof Join
Asof Join is a left Join and inexact matching on join key. Rather than matching equal keys, asof
Join joins matches keys that are nearest. In the context of time series analysis, asof join is
often used for matching nearest points in time.

Existing implementations

Spark
None

Pandas
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.merge_asof.html

Flint
http://ts-flint.readthedocs.io/en/latest/reference.html?highlight=summarizeIntervals#ts.flint.TimeS
eriesDataFrame.leftJoin

https://github.com/twosigma/flint
http://code.kx.com/q/
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.merge_asof.html

Kdb
https://code.kx.com/wiki/Reference/aj

Window Function
Window functions operate on a set of rows and return a single value for each row. The term
window describes the set of rows on which the function operates. A window function uses
values from the rows in a window to calculate the returned values.

In time series analysis, window functions are used to compute certain value for each row using
the rows around it (in time). Window functions can be used for moving average, exponential
smoothing and etc.

Existing implementations

Spark
Window functions (with the limitation that a partition key must be provided)
https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html

Pandas
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.functions.window
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rolling.html#panda
s-dataframe-rolling

Flint
http://ts-flint.readthedocs.io/en/latest/reference.html?highlight=summarizeIntervals#ts.flint.TimeS
eriesDataFrame.summarizeWindows

Rolling Window Function
Rolling window functions are a special case of groupby, where groups are defined by a rolling
window. A rolling window can be a rolling time window or a rolling count window. Rolling
window can be used for, e.g., rolling window regression.

Rolling window is similar to window functions. The difference is:

●​ With window functions, each input is associated with a window. The output size is the
same as the input.

●​ With rolling window functions, the output size is the same as number of windows defined
by the window function, not the input size.

https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html
https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.functions.window
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rolling.html#pandas-dataframe-rolling
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rolling.html#pandas-dataframe-rolling

Spark doc explains rolling time window quite nicely:
http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions.window

Existing implementations

Spark
http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions.window

Pandas
None

Flint
None

Resample
In time series analysis, resample is used for changing the frequency of the data. There are two
types of resample, upsample and downsample.

Upsample means resample the data to a higher frequency, e.g. monthly to daily. Upsample uses
interpolation to fill the missing data, e.g., linear interpolation.

Downsample means resample the data to a lower frequency, e.g., daily to monthly. Downsample
uses aggregation to aggregate multiple samples to one sample, e.g., mean.

This article explains upsampling and downsampling quite nicely:
https://machinelearningmastery.com/resample-interpolate-time-series-data-python

Existing implementations

Spark
groupby for downsample

Pandas
resample function for both upsample and downsample.
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html

groupby can also be used for downsample

http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions.window
http://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html#pyspark.sql.functions.window
https://machinelearningmastery.com/resample-interpolate-time-series-data-python
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html

Flint
`summarizeIntervals` for downsample:
http://ts-flint.readthedocs.io/en/latest/reference.html?highlight=summarizeIntervals#ts.flint.TimeS
eriesDataFrame.summarizeIntervals

Question:

●​ Do we need a new resample function in Spark or is groupby sufficient?
●​ Time series resample maintains time order, i.e., after resample, data are still ordered by

the new time column. Can we have groupby maintain the same property when used for
resampling?

Time Shift
Time shift is a operator that shifts values in a time series back and forth in time. Different from
“changing timestamp”, time shift has special property:

●​ An ordered series is still ordered after time shift
●​ If the time bound of a series is known before time shift, the time bound is still know after

the shift, and can be computed by shifting the time bounds.

Time shift is useful for autoregression, among many other things.

Existing implementations

Spark
withColumn. But doesn’t preserve the property of a time shift.

Pandas
https://pandas.pydata.org/pandas-docs/stable/timeseries.html#shifting-lagging

Flint
http://ts-flint.readthedocs.io/en/latest/reference.html?highlight=summarizeIntervals#ts.flint.TimeS
eriesDataFrame.shiftTime

Accumulation
Accumulation is a sequence of partial aggregation of a given sequence. A simple
example of accumulation is cumulative sum.

https://machinelearningmastery.com/autoregression-models-time-series-forecasting-python/
https://pandas.pydata.org/pandas-docs/stable/timeseries.html#shifting-lagging

Existing implementations

Spark
Window functions (with the limitation that a partition key must be provided)

Pandas
expanding
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.expanding.html

Flint
http://ts-flint.readthedocs.io/en/latest/reference.html?highlight=summarizeIntervals#ts.flint.TimeS
eriesDataFrame.addSummaryColumns

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.expanding.html

	Overview
	Gourav Sengupta: Asof Join
	Existing implementations

	Window Function
	Existing implementations

	Rolling Window Function
	Existing implementations

	Resample
	Existing implementations

	Time Shift
	Existing implementations

	Accumulation
	Existing implementations

