
DEADLOCK IN DBMS

A deadlock is a condition where two or more transactions are waiting indefinitely for one another to

give up locks. Deadlock is said to be one of the most feared complications in DBMS as no task ever

gets finished and is in waiting state forever.

For example: In the student table, transaction T1 holds a lock on some rows and needs to update

some rows in the grade table. Simultaneously, transaction T2 holds locks on some rows in the grade

table and needs to update the rows in the Student table held by Transaction T1.

Now, the main problem arises. Now Transaction T1 is waiting for T2 to release its lock and similarly,

transaction T2 is waiting for T1 to release its lock. All activities come to a halt state and remain at a

standstill. It will remain in a standstill until the DBMS detects the deadlock and aborts one of the

transactions.

DEADLOCK AVOIDANCE

When a database is stuck in a deadlock state, then it is better to avoid the database rather than

aborting or restating the database. This is a waste of time and resource.

Deadlock avoidance mechanism is used to detect any deadlock situation in advance. A method like

"wait for graph" is used for detecting the deadlock situation but this method is suitable only for the

smaller database. For the larger database, deadlock prevention method can be used.

DEADLOCK DETECTION

In a database, when a transaction waits indefinitely to obtain a lock, then the DBMS should detect

whether the transaction is involved in a deadlock or not. The lock manager maintains a Wait for the

graph to detect the deadlock cycle in the database.



WAIT FOR GRAPH

1. This is the suitable method for deadlock detection. In this method, a graph is created based

on the transaction and their lock. If the created graph has a cycle or closed loop, then there

is a deadlock.

2. The wait for the graph is maintained by the system for every transaction which is waiting for

some data held by the others. The system keeps checking the graph if there is any cycle in

the graph.

DEADLOCK PREVENTION

Deadlock prevention method is suitable for a large database. If the resources are allocated in such a

way that deadlock never occurs, then the deadlock can be prevented.

The Database management system analyzes the operations of the transaction whether they can

create a deadlock situation or not. If they do, then the DBMS never allowed that transaction to be

executed.

WAIT-DIE SCHEME

In this scheme, if a transaction requests for a resource which is already held with a conflicting lock by

another transaction then the DBMS simply checks the timestamp of both transactions. It allows the

older transaction to wait until the resource is available for execution.

Let's assume there are two transactions Ti and Tj and let TS(T) is a timestamp of any transaction T. If

T2 holds a lock by some other transaction and T1 is requesting for resources held by T2 then the

following actions are performed by DBMS:



Check if TS(Ti) < TS(Tj) - If Ti is the older transaction and Tj has held some resource, then Ti is allowed

to wait until the data-item is available for execution. That means if the older transaction is waiting for

a resource which is locked by the younger transaction, then the older transaction is allowed to wait

for resource until it is available.

Check if TS(Ti) < TS(Tj) - If Ti is older transaction and has held some resource and if Tj is waiting for it,

then Tj is killed and restarted later with the random delay but with the same timestamp.

Wound wait scheme

In wound wait scheme, if the older transaction requests for a resource which is held by the younger

transaction, then older transaction forces younger one to kill the transaction and release the

resource. After the minute delay, the younger transaction is restarted but with the same timestamp.

If the older transaction has held a resource which is requested by the Younger transaction, then the

younger transaction is asked to wait until older releases it.


