
Architectural Requirements

Quality Requirements

QR1: Usability:
●​ QR1.1 The system shall have a responsive UI that adjusts seamlessly across

desktop, tablet, and mobile devices.
●​ QR1.2 The interface shall adhere to accessibility standards, including keyboard

navigation and color contrast compliance.
●​ QR1.3 The platform shall provide visual cues (color indicators, feedback messages)

to enhance user understanding and reduce confusion.
●​ QR1.4 Onboarding tutorials or walkthroughs shall be available to help new users

understand key features.

QR2: Performance

●​ QR2.1 The system shall maintain a median page load time of under 2 seconds for all
major views (e.g., dashboard, problem screen).

●​ QR2.2 The system shall support real-time updates (e.g., leaderboard changes,
badge unlocks) using WebSockets with a latency of <300ms under average load.

●​ QR2.3 Cached content shall be used to reduce server requests for static resources
and frequently accessed data (e.g., profile info, question metadata).

QR3: Scalability

●​ QR3.1 The backend infrastructure shall support horizontal scaling to handle at least
10,000 concurrent users without performance degradation.

●​ QR3.2 Microservices shall be independently deployable and scalable based on load
(e.g., analytics service scales separately from the problem service).

●​ QR3.3 Load balancing shall be implemented to evenly distribute requests across
services.

QR4: Reliability

●​ QR4.1 The system shall maintain 99.5% uptime per month, excluding scheduled
maintenance.

●​ QR4.2 The system shall recover from microservice failure within 60 seconds using
service isolation and fallback mechanisms.

●​ QR4.3 Daily backups of all relational and time-series data shall be automatically
performed and stored securely.

QR5: Maintainability

●​ QR5.1 All backend services shall follow a consistent folder structure using the
NestJS Controller-Service-Repository pattern.

●​ QR5.2 New features or modules shall be added using existing microservice
conventions without requiring changes to unrelated services.

●​ QR5.3 Code documentation (using JSDoc) shall be provided for all public functions
and modules.

QR6: Security
●​ QR6.1 All HTTP requests shall be transmitted over HTTPS using TLS 1.2+.
●​ QR6.2 All authentication shall follow the OAuth 2.0 + JWT standard, with access

tokens valid for 1 hour and refresh tokens valid for 7 days.
●​ QR6.3 User passwords shall be hashed using bcrypt with at least 12 salt rounds

before being stored.
●​ QR6.4 All API endpoints handling sensitive data shall require Bearer Token

authorization and enforce role-based access control.
●​ QR6.5 The platform shall comply with POPIA regulations by:

○​ Allowing users to view and delete their personal data.
○​ Logging all access to sensitive user information.
○​ Providing privacy policy consent before account creation.

QR7: Testability

●​ QR7.1 All backend services shall include unit and integration tests with at least 80%
code coverage, measured via Jest.

●​ QR7.2 E2E (end-to-end) tests shall be implemented for user registration, login, and
problem solving using Cypress.

●​ QR7.3 All CI pipelines shall fail builds when test coverage drops below the minimum
threshold or when any critical test fails.

Architectural Patterns

ELO Learning will follow a Service-Oriented architecture, supported by RESTful APIs and
WebSocket communication channels.

Service-Oriented Architecture:

The system is structured using a microservices architecture, where each core feature is
implemented as an independent, loosely coupled service. This supports scalability, fault
isolation, and independent development.

Each service exposes RESTful API endpoints, follows the service layer pattern internally,
and is deployed as a standalone container (via Docker).

Services are orchestrated through internal API calls and WebSocket gateways, ensuring
seamless interaction between modules.

The following core services have been identified:

Service Description

Auth Service Handles user registration, login, password hashing, JWT
generation, and OAuth2 flow. Responsible for issuing and
validating access tokens.

Matchmaking Service Implements the ELO-based algorithm to assign math
problems based on a user's current skill level.
Continuously updates ratings after problem attempts.

Math Problem Service Manages the storage, retrieval, and tagging of math
problems. Supports filtering by difficulty, topic, and ELO
rating.

Stats / Leaderboard Service Computes and delivers leaderboard data, user ranks, and
ELO histories. Pulls time-based metrics from InfluxDB for
trend tracking.

User Profile Service Stores and retrieves personal user data, such as name,
avatar, progress, and achievements. Supports user
dashboard and gamification views.

Analytics Service (Optional/Planned) Logs performance data and interaction
metrics for user feedback and system insights. May
integrate with ML-based recommendation systems.

Each service is:

-​ Modular (partitioned) but not independently deployable (reliant on the ESB)
-​ Shares databases and allows other services to have access to it’s schemas
-​ Documented via Swagger or OpenAPI (to be included in developer documentation)*

A Client-Server Architecture:

The system follows a client-server model, separating the frontend application (React +
Next.js PWA) from the backend (NestJS REST API and WebSocket Gateway).

The frontend communicates with the backend using RESTful API calls and WebSockets
for real-time updates.

Services will be used to modularize core services such as:

-​ Authentication
-​ Matchmaking (ELO algorithm)
-​ Problem management
-​ Leaderboard and stats
-​ Analytics and feedback

Each service can be deployed, maintained, and scaled independently.

Additional services such as background processing, ranking updates, and adaptive
learning are designed to run asynchronously.

ELO Learning adopts a service-oriented architecture rather than a traditional monolithic
design. This architectural choice aligns with the project’s goals for scalability, modularity,
resilience, and long-term maintainability.

Aspect Services Monolith

Scalability Individual services (e.g.,
Matchmaking, Analytics,
Leaderboard) can scale
independently based on
load (e.g., elastic scaling in
AWS/Azure).

Entire system must scale as
one unit, leading to
inefficient resource usage
under uneven load.

Modularity Each feature (Auth, ELO
Engine, Content
Management, etc.) lives in
its own service, enabling
cleaner separation of
concerns and domain-driven
design.

Tight coupling between
modules increases the risk
of regressions during
updates.

Deployment Enables partial deployments
and independent versioning;
only affected services need
to be rebuilt or redeployed.

Requires full system
redeployment even for small
updates—slows down
release cycle.

Team Autonomy Backend services can be
developed and tested by
different sub-teams
concurrently without waiting
on unrelated features.

Single shared codebase
makes parallel development
harder and riskier.

Fault Isolation Failures in non-critical
services (e.g., leaderboard)
do not crash core learning
functionality (e.g., question
delivery, auth).

A crash in any module can
bring down the entire
system.

Technology Choice Allows flexibility to introduce
different tools/languages for
specific services in the
future (e.g., using Python
ML models in Analytics
while keeping NestJS core).

Single stack requirement
across the whole system
may limit flexibility or force
compromises.

Long-Term Growth Supports future expansion
to new subjects (e.g.,
science, coding) via new
services that plug into the
ecosystem cleanly.

Monoliths become
increasingly difficult to
manage as scope and user
base grow.

Given that ELO Learning is designed to be:

●​ User-scalable (supports thousands of concurrent learners),
●​ Feature-rich (matchmaking, analytics, gamification),
●​ Continuously evolving (future mobile apps, subject expansion, AI features),

the service-oriented architecture provides a robust, future-proof foundation that facilitates
iterative development and rapid delivery without sacrificing maintainability or performance.

Architectural Diagram: Layered Overview of ELO
Learning

 ELO-Learning-Architectural-Diagram.pdf

https://drive.google.com/file/d/1NNjTPkRUsVemaxcqXW5vCLNFTpMoNJiv/view?usp=drive_link

Event-Driven Architecture (Optional):

The system supports event-driven communication for real-time updates (e.g., leaderboard
updates, new problems).

WebSocket communication (NestJS Gateway) enables live interaction between users and
the platform.

Future versions will incorporate:

-​ A publish-subscribe (pub/sub) model for broadcasting updates (e.g., using Redis
Pub/Sub or RabbitMQ).

-​ Optional event replay and recovery features to support resilience and progress
recovery.

Design Patterns
Strategy Pattern:
Used in the domain model to allow interchangeable problem selection and ranking logic(e.g.,
ProblemSelectionStrategy, RankingStrategy)

Singleton Pattern:
Ensures only one instance of each database connection per service (e.g., PostgreSQL,
InfluxDB), using connection pooling.

Observer Pattern:
Enables real-time communication via WebSockets. For example, when a user completes a
problem, the frontend is updated live with new ELO stats or leaderboard changes.

Mediator Pattern:
Used via a messaging queue to promote loose coupling by having different subsystems
communicate with each other via a central mediator rather than directly with each other. This
will make the components more independent by reducing dependencies between
components, making the system more maintainable and scalable.

Service Layer Pattern:
In NestJs, our logic is organized into Controllers(for routing) → Services(for business logic)
→ Repositories(for data access). This ensures clean separation of routing, business logic
and data access.

Data Transfer Objects Pattern:
DTOs are used to validate and structure incoming/outgoing data for all microservice
endpoints.

Constraints

Time:
Three components must be demonstrated by Demo 2 (27 June 2025), limiting time for full
system integration.

Security:
The platform must comply with POPIA and enforce secure authentication using OAuth 2.0
and JWT. All communication must occur over HTTPS with TLS encryption. User data must
be stored securely and may not be exposed publicly. Backend services must be isolated to
prevent unauthorized cross-service access.

Infrastructure:
The system must be containerized (Docker) and deployable to cloud platforms (AWS/Azure)
using CI/CD pipelines.

Techstack

Use-case Proposed Technologies and Frameworks

Frontend Development React.js, Next.js (PWA)

Backend Development ExpressJS

Containerization Docker

Hosting & Infrastructure AWS or Azure

Real-Time Communication Native WebSocket integration (via NestJS Gateway)

Database (Core Data: Users,
Problems)

Relational Database (PostgreSQL)

Database (Time-Series Data:
Progress, Rankings)

Time-Series Database (InfluxDB)

Testing Cypress and Jest

Version Control Github and Docker

Documentation JSDocs and Markdown (Github)

DevOps & Deployment Github Actions (CI/CD Pipelines)

Security Secure data transmission (HTTPS - TLS encryption)

User Authentication Token-Based Security (OAuth 2.0 / JWT)

Custom Math Keyboard/Calculator
To improve mathematical input and support the platform’s gamified learning flow, the team
has implemented a custom-built math keyboard and input field, inspired by platforms like
Mathway and Symbolab.

Key Features:

-​ Interactive, on-screen keyboard with symbols for:
-​ Exponents, square roots, fractions, integrals
-​ Basic arithmetic operators
-​ Trigonometric functions

-​ Real-time input via:
-​ Virtual keyboard clicks
-​ Physical keyboard typing

-​ Supports LaTeX-style syntax and math rendering

Technology Stack:

Use case Technology

Math input field MathLive (custom wrapped in React
component)

Real-time preview KaTeX (via react-katex) for lightweight math
rendering

Optional renderer fallback MathJax (for advanced layout and
accessibility support)

Backend parsing (optional) math.js for symbolic expression evaluation
and backend grading

Styling & layout TailwindCSS or component-level styling via
React

System Flow:

-​ Student enters input using the math keyboard.
-​ The LaTeX expression is previewed live using KaTeX.
-​ After submission, the backend may receive and evaluate the expression. And then

ELO score updates and problem feedback are returned.

Technology choices

 1. Frontend Development: React.js and Next.js (PWA)

●​ React.js offers a component-based, reusable structure ideal for complex UI
development.

●​ Next.js provides server-side rendering (SSR) and PWA capabilities, improving
performance and SEO.

●​ The PWA (Progressive-Web-App) approach ensures mobile responsiveness and
offline usability, key for educational accessibility.​

Alternatives:

1.​ Vue.js & Nuxt.js offer SSR and a great development experience, but React has a
larger ecosystem and team familiarity is often higher.

2.​ SvelteKit is Lightweight and fast with simple syntax, but lacks the orthogonality and
third-party support that React/Next.js provide. ​

React & Next.js strike a balance between performance, ecosystem, and
long-term maintainability.

2. Backend Development: NestJS (Built on ExpressJS)
●​ NestJS adds structure (controllers, services, modules) on top of Express, aligning

perfectly with your Controller-Service-Repository pattern.
●​ Strong TypeScript support, dependency injection, and built-in testability.
●​ Ideal for microservices with modular architecture.​

Alternatives:

1.​ Express.js (raw) is more flexible but lacks NestJS’s opinionated architecture and
built-in structure.

2.​ Spring Boot (Java) is excellent for enterprise apps but less writable and more
complicated, with steeper learning curve and slower iteration speed.​

NestJS enables rapid, scalable development while maintaining clean code
separation and testability.

3. Real-Time Communication: NestJS WebSocket
Gateway

●​ Tight integration with your existing NestJS services.
●​ Scales well for features like live leaderboards, ELO updates, and collaboration.​

Supports event-driven architecture and observer patterns.​

Alternatives:

1.​ Socket.IO (standalone) has more powerful real-time tools, but additional integration
overhead, which could prove to be challenging for a small team without designated
integration engineers.​

2.​ Firebase Realtime Database is an easier setup for small apps but less flexible,
vendor-locked, and not ideal for backend-heavy logic. ELO learning is in its genesis
phase, this would make scalability painfully difficult.

NestJS Gateway keeps everything under a unified framework, making real-time
communication more manageable.

4. Database (Relational): PostgreSQL

●​ Robust, open-source SQL database with strong ACID compliance.
●​ Excellent for complex queries, indexing, and analytics.
●​ Supports JSON for semi-structured data (e.g., user metadata).​

Alternatives:

1.​ MySQL is also relational, but PostgreSQL is generally more feature-rich and
performant for analytics-heavy workloads. PostgreSQL is also easier and cheaper to
link with services provided by platforms like cloudflare.​

2.​ MongoDB is great for flexible schemas, but less suitable for consistent, transactional
data like ELO ratings or problem metadata.​

PostgreSQL balances performance, structure, and flexibility which are perfect
for education-based applications. Experts online and alike from platforms like
ITSI recommended this approach.

5. Time-Series Data: InfluxDB

●​ Optimized for time-series metrics is ideal for tracking user progress, score changes,
and trends over time.

●​ High write throughput and efficient retention policies.

Alternatives:

1.​ Prometheus is strong for monitoring metrics, but less suited for user-generated
educational data.

2.​ TimescaleDB is built on PostgreSQL and more SQL-friendly, but slightly heavier and
potentially overlapping with your main DB.​

InfluxDB is specialized for time-series needs without bloating your relational
layer.

 6. Authentication: OAuth 2.0 and JWT

●​ Industry-standard for secure, stateless authentication.
●​ Works well for token-based sessions across microservices.
●​ Refresh tokens provide a smooth UX for long sessions.​

Alternatives:

1.​ Firebase Auth is easier to integrate but vendor-locked (you need to rely heavily on
Firebase and just run with what they have available) and less customizable.​
Session-based Auth is simpler for monoliths, but less scalable and stateless for
distributed systems.​

OAuth and JWT supports secure, scalable auth for SOA architecture and aligns
with modern best practices.

7. DevOps: Docker and GitHub Actions (CI/CD)
Why you chose it:

●​ Docker enables consistent environments and microservice containerization.
●​ GitHub Actions provides simple, powerful CI/CD directly integrated with your repo.​

Alternatives:

1.​ Jenkins – Mature, but more complex and harder to maintain for smaller teams.
2.​ CircleCI – Excellent CI/CD service but introduces another platform to manage.​

Docker and GitHub Actions offer quick setup, seamless integration, and
simplicity for small-to-mid scale dev teams. Docker is also more widely used in
the industry and its familiarity is a more valuable skill than any of the other
platforms.

8. Math Input: MathLive + KaTeX + math.js

●​ MathLive offers a rich virtual math keyboard with LaTeX support.​
KaTeX provides fast, high-quality math rendering.

●​ math.js enables backend symbolic evaluation and grading logic.​

Alternatives:

1.​ Desmos API is great for graphing but not built for full math input workflows.​

2.​ Quill.js & MathQuill plugin have decent math input, but harder to customize for
deep gamified workflows.​

Our stack offers high control, performance, and extensibility, aligned with our
educational goals.

	Architectural Requirements
	
	
	Architectural Patterns
	Service-Oriented Architecture:
	A Client-Server Architecture:

	Architectural Diagram: Layered Overview of ELO Learning
	
	Event-Driven Architecture (Optional):

	Design Patterns
	Constraints
	Techstack
	Custom Math Keyboard/Calculator
	Technology choices
	 1. Frontend Development: React.js and Next.js (PWA)
	2. Backend Development: NestJS (Built on ExpressJS)
	3. Real-Time Communication: NestJS WebSocket Gateway
	4. Database (Relational): PostgreSQL
	5. Time-Series Data: InfluxDB
	 6. Authentication: OAuth 2.0 and JWT
	7. DevOps: Docker and GitHub Actions (CI/CD)
	8. Math Input: MathLive + KaTeX + math.js

