Compilers & Hardware Accelerators
HomomorphicEncryption.org Working Group 2

Summary

Set expectations and guidelines for discussion

Discuss two breakout groups, one for defining IRs in MLIR and one for HW acceleration
cost models and integration

Three conjectures to discuss: "FHE is not one thing (even within RLWE schemes)", "FHE
should not always be looked at as a circuit", "We don't yet know how to generalize
decision making across particular instantiations"

Compare our goals with ONNX

https://github.com/google/heir will be the home for the standard IRs

Notes

Purpose of the meetings: increase collaboration between hardware and compiler
developers within and between groups. Should be looking at standardizing IRs for FHE,
abstractions/cost models for hardware, collect and make accessible folk lore about HW
solutions, develop meaningful benchmarks for compilers and hardware, in collab with
benchmark group
Originally started last year after HACS workshop, informal meetings with various folks &
ETH-Google.
Carry over expectations and guidelines from HACS
o Please demonstrate respect for others at all times
o Be present and listen to others with focus
o Fine to debate, part of the point, but after a certain point of debate, be ready to
agree to disagree when you reach that point.
o Try to speak clearly and avoid jargon, given all of our different background
(except FHE)
o Try and make one point per speak, try to speak 1/n of the time for n people.
Mostly discussions, subgroups, for IR and for hardware cost models, etc.
How frequently should we meet, does this time slot work?
Introductions:
o Jeremy Kun, Google, here for IR development & providing eng support for
everyone else
o Alex Viand, Intel, ensure there's a good ecosystem of FHE resources and
software
o Florent Michel, Optalysys, new HW for accelerating FHE, here to see what is the
state on the compilers and how we can work together w/ HW community
Yongwoo Lee, share about abstractions on FHE
Asra Ali, Google, help develop unified IR

https://github.com/google/heir

o Michiel, KU Leuven, HW for FHE, FPGA field programmable gate array, here to
assist in HW stuff, interested in intersection with compiler world

o Shruthi Gorantala, Google, here for IRs, MLIR, benchmarks

o Robin Geelen, KU Leuven, acceleration of BGV and CKKS

o Vinu Joseph, NVIDIA, accelerating primitives on NVIDIA stack CPU/GPU

Let's include someone from Zama for next time.

Let's assume everything in these meetings are public; let's assume not attributing
anything you say to your company by default

This is hard for standardization, but profitable time, because if we do this right we save
ourselves a lot of reinventing the wheel.

FHE is not one thing. RLWE (Ring Learning With Errors) (also in re DPRIVE) are all
different in how you implement/use them. Very different from CGGI branch (binary
gates/low bit-width lookup tables). HW Acceleration efforts are also very diverse. Alex is
interested to hear what is new outside of DPRIVE land, i.e., GPU.

People like to think of FHE programs as circuits, but they're decidedly not. Many modern
FHE programs make use of non-circuit features.

Unavoidable fact (modulo breakthrough) that all FHE computations are inherently noisy;
LWE noise, or semantically noisy a la CKKS.

All nontrivial FHE computations require quantization or approximation. Neither option of
RLWE or CGGI options are a one-size-fits-all.

Given any fixed set of parameters (input, HW, schemes, parameters), we know how to
make a good setup, but we don't know how to generalize across them.

Is/should FHE be viewed as a circuit?

o Shruthi: static upper bounds matters, rather than circuit specifically.

o Alex: Difference between being a circuit and being equivalent to a circuit model.

o Alex: for the IR there are practical differences, but does it really matter.

Do we know how to generalize across parameters?

o Asra: agree but does it just depend on the ...

o Alex: depends on the scheme: CKKS look at precision and crank up modulus;
TFHE might be different; bootstrap BGV has this weird tradeoff between how
much time you spend computing the bootstrap vs the actual approximations.

o Alex: can't expect people off the street to know all of these weird tradeoffs. Fairly
obvious good answers for specific scheme instantiations. Writing a program once
and retargeting across schemes seems harder. Folks like Rachel Player @ Royal
Holloway are interested (she couldn't make it today)

o Michiel: can relate to from DPRIVE program. Lots of choices in mapping
benchmark to algorithm, how to approximate/quantize.

Jeremy: why?
Michiel: coupling between how you might implement things and how you
quantize.

o Alex: for one hardware for one scheme it's already hard. Nobody tells you what
part of the input program is relevant. How much can | throw away before the task
is no longer meaningfully related.

What can we do going forward?

No longer toy compilers; have to deal with a lot of different stages of the process.
Taking an input program and representing it so it can be done in FHE. Once you
have them, you can reorder/optimize the circuit to make it faster. Then how do
you implement the atomic FHE ops (like key switch). Then the HW target
optimization.
Normal compiler world, LLVM came to the rescue. MLIR now for multi level
intermediate representation; breaking down into small things. Can support higher
level constructs like linalg. HECO has some FHE-specific dialects.
Right now nobody targets accelerators with MLIR, but idea is that the
accelerators could slot into the whole view.
MLIR: Can easily define new IR dialects with types, operations, etc, that
represents a higher level sort of assembly language. SSA=single-static
assignment form (can't override variables). Static type system. MLIR defines the
syntax, but no semantics inherent in the system. Lowering reduces high level ops
to lower level ops until you are at the machine code. For FHE, you'd translate
BFV mult into a bunch of polynomial multiplications, and one of those would be
converted to a bunch of NTTs, and each would break further down into RNS ops.
Then you can canonicalize/optimize to avoid inefficient steps.
All the cool proprietary math magic happens in the lowering/optimizing passes.
No need to leak the math if you don't want to. If we standardize on the dialects
and types, your project can use a different lowering and you can keep it private.
You only need to define some small amount of custom stuff specific to your
domain, because we get in the built-in language stuff like memory references,
arrays/tensors, loops, etc.
Discussing with Google: what should these dialects look like?

m Zama has some dialects as implemented in concrete

m Alex Viand did some that are roughly copies of the SEAL API.

m Google would do similar if it was in a vacuum.

e Concrete tasks:

o O O

O

Standardize dialects for each of the schemes and the underlying math (ring, etc.)
Who is interested in this specific sub-area of the topic?

github.com/gooagle/heir as the home for the dialects/types

don't want to upstream them to MLIR, but also don't want them to die in some
random repository. Google has advantage that someone's on call to fix MLIR
issues upstream with internal projects.

e Vinu: interoperability story?

o

With DL acceleration, one step in standardizing across companies/chips/tools, is
the creation of ONNX (open neural network exchange format)

Vinu believes they are all circuits (first point above); more true in case of CGGlI,
but if we can agree on a standard circuit format and what each operator is, then
you can exchange your code across companies. Channel of independent
optimization. Where in this picture would it stand?

Alex: MLIR is a set of tools for dealing with things in the MLIR format. MLIR has
efficient textual representation/bytecode, it's relatively easy to convert to/from

http://github.com/google/heir

MLIR (no harder than some custom format like ONNX). Define what are the
operators, etc. Using framework of MLIR.

o Jeremy: let's use MLIR as the "ONNX" for now, mostly to iterate and figure things
out, and use the MLIR textual representation/bytecode representation. Once we
have things really settled, we can revisit defining an ONNX-style format that is
independent of MLIR.

e Alex: FHE doesn't look like circuits when you consider scheduling. With a circuit you
have to reconstruct looping information, but with a program format you can do auto
vectorization, parallel scheduling, etc.

e Other breakout group: more work on the hardware side, how do we define hardware
targets

o Qto HW folks: what is the burning question to tackle?

o Michiel: Take a specific benchmark and compile it down to different
accelerators/schemes. Discussions on HE Bench framework (some overlap).
Very difficult to compare your results to different work using different parameter
sets/schemes.

Jeremy: someone has to implement it even if we have an MLIR solution

Alex: if one pathway works really well for a specific style (special word size), how
do you compare for things that don't make that decisions. What is the last point at
which you can still reasonably target different accelerators? How you quantize,
e.g., may disadvantage particular accelerators. Obv for schemes, but what can
we actually distill that still has some freedom to target different accelerators?

o Vinu: CuFFT been shipping for a long time, NTT primitive similar. Nature of arch
decisions: peak performance device is achieved for some fixed set of
parameters. This is aligned to CKKS style (by chance); will see CGGl is worse
because of that.

o Some fundamental issues of benchmarking: is it OK if HW is not always fair to
some scheme?

o Alex: changes to things like montgomery prime vs other have a big impact.
Choosing a different scheme is "fair game" if it is worse. But within, say, TFHE,
there's lots of knobs with gate bootstrapping vs low-width integers; larger
parameters vs larger bit width.

e Scheduling!

o Suggestion: Tuesdays every two weeks: alternate breakout groups and
joint meeting.

Keep them at an hour.
Alex will send out a doodle to everyone (including the people that couldn’t make
this slot) to see which weekday & time work best

	Compilers & Hardware Accelerators
	Summary
	Notes

