Loading Wii Discs on ISO Loaders for Speedrunning
Guidelines on Ensuring Fair Load Times

Summary:

e [ntroduction

e Section 1: Understanding the Problem
o How does the Wii load games?
o How homebrew fit into all this?

o So what is the problem exactly with homebrew?
o And how can we fix it?

Section 2: Setting up Homebrew

o Figuring out what I0S a game runs on

o Copying stock IOS into arbitrary slots
Section 3: Disc Channel and Gecko OS

Section 4: Neogamma
Section 5: USB Loader GX
Section 6: References and Further Reading

Presented and written by the Trauma Center speedrunning community:
e Thurler
e LeoKeidran

Special thanks to:

e Joselle for verifying load differences between loaders for Super
Mario Galaxy

e lIrisjoker and Cosimo for submitting video for loader and hardware
comparisons

e XFlak for providing a plethora of information regarding the
problem, and helping us draw the conclusion

e Other GBATemp users that provided useful information

One of the few things every speedrunning community will agree on is that load
time differences between platforms and hardware revisions is a massive headache
to deal with, when trying to ensure fair and balanced competition among players. In
the Wii's case, there are at least 4 disc drive revisions, all of which can have an
effect on a game’s load times - since the bottleneck is, by far, the speed with which
you read data from the disc.

An extreme aggravant in the Wii's case is the fact that it is region locked, and
more often than not, players find themselves with a Japanese copy of their game
and a North American / European console. Enter softmodding and homebrew, to try
and circumvent the region lock in the system. The most common way to do it is to
use what is known as an ISO loader - something that will jump execution from the
system menu (or the homebrew app menu) to the game’s boot sequence.

Since this is a custom app loading into the disc, one is left to wonder how (or if)
this could affect the load times at all. It seems like such a trivial matter, but as it turns
out, there is a huge detail that is central to ensuring fair load times when using these
loaders that often gets overlooked.

In this document, we aim to cover some questions that might arise when
pondering over this subject, and provide explanations for what is going on when
using one of these loaders, as well as explain why they affect speedrunning at all.
We will also provide a guide for setting up your homebrew environment in a way that
ensures you can run Wii games fairly, as if you had a stock Wii using stock firmware
to run stock games.

We will also go over some additional details to cover some optional video settings
for specific Wii games that do not support progressive scan (480p), so that you can
increase your video quality without compromising fairness in load times.

IMPORTANT: We only cover the cases where you are loading
games from the Disc drive, rather than loading them from the USB
slot. Since you can hook up any kind of hard drive to the Wii
through USB, it’s trivial to make a setup where you get instant
loading in games by using an SSD or a high end HDD. Thus,
loading games from USB should NOT be allowed to ensure fairness
when playing. Disconnecting your USB drive is recommended to
avoid confusion when loading games.

Section 1: Understanding the Problem

How does the Wii load games?

Keep in mind this will be a very simplified explanation, and more details can be
found in the links provided in Section 6. I’'m by no means an expert on the topic. That
said, the Wii has 256 slots to store revisions of the “operating system” that it runs,
and any game can request to run on any of those revisions, by specifying the slot it
wants to load from. We will be calling each revision an 10S, and each slot an 10S
slot, since it, well, stores an |I0S. So when talking about IOS X, we mean whatever
Nintendo (or your homebrew apps) stored in 10S slot X.

Most launch titles will request 10S 9, which contains the things Nintendo packed
up with the Wii on launch back when the system menu was still in version 1.0. Later
games required some software updates that brought in new features for the Wii's
system, with new functionality and patches that affected both games and apps.
Super Mario Galaxy, for example, requests 10S 33, since it was built to run in that
revision of the system’s software.

You might wonder why not just make every game load in whatever the most
recent 10S is, but this presents a problem with backwards compatibility - can you be
100% sure that your future updates won'’t break something that old games relied on?
Some obscure functionality that you may not be accounting for? By isolating the 10S
slots and ensuring games always run on that slot, you can make sure they will run
fine no matter what the future holds for the system.

That said, specific IOS can have updates within itself. |IOS 9 for example has 10
official revisions, each building more functionality into that slot, sometimes
backporting things that could be useful for older software, sometimes just fixing bugs
and exploits.

It's important to note that the Wii can only have ONE active IOS and ONE active
game/app at a time, so when you booted your launch day European Wii into the
system menu, it was running I0S 10 and the system menu v1.0E. When you loaded
a launch title, it switched to IOS 9 and whatever game you loaded. This is true even
today, with homebrew apps and games loaded from Disc or USB.

How does homebrew fit into all of this?

The reality of the fact is that the single most important homebrew application is
piracy. It's what the masses want, and plenty of homebrew developers will work
tirelessly to ensure you can play as many games as possible without a legit copy of
the game. We’re not going to get into the morality of this, but anyway.

Piracy relies on loading a copy of a game from something that isn’t the original
disc, be it a writable DVD or a USB drive. Neither of those are supported by the Wii
natively, so developers need to go around the system checks to forcefully load the
game. This isn’t as simple as just redirecting execution, so various patches need to
be applied to the system files.

However, let's say someone messes up and patches faulty software into
Nintendo’s official IOS slots, and the system just stops working altogether, bricking
your Wii. This is obviously a risk that everyone wants to avoid, so we need some
way to isolate our custom code from Nintendo’s official one.

Enter the arbitrarily high I0S slots, from slot 200 onwards. These were never
used officially by Nintendo, except when they attempted to patch out homebrew
software by overwriting those slots with useless code. The cat-and-mouse game is
long over though, and most homebrew apps nowadays will run on 10S 249, which is
the slot most people will install custom software to.

Commonly abbreviated as clOS (custom 10S), this is a collection of patches from
various developers that adds functionalities to go around system limitations (like
region locks) and enhance already present functions (like add in support for USB
loading). Since there’s no need to reinvent the wheel, these are applied on top of an
existing 10S, copied over into slot 249. This is referred to as the base 10S for the
clOS, so you can say your |OS 249 is a clOS based on I0S 57, for example.

So what is the problem exactly with homebrew?

Since homebrew apps are designed to load backup of games from possibly
non-standard mediums, it will require a clOS to be present, based on a very recent
IOS to maximise compatibility with games. This is another important point - most
games will work just fine with a later IOS from the intended one they came out with.
Some will stop working because of a small detail that the clOS can patch in, others
for more complex reasons that will require a second clOS to be present, based on a
different 10S.

The most common way to install homebrew nowadays is to have 3 clOS installed
in 10S 249, 250 and 251, to ensure compatibility with pretty much every Wii game
out there. These are based on |IOS 57, 56 and 38 respectively, as seen on the most
popular homebrew guide out there today. This means that, by default, games will be
using 10S 249 (based on 57) when loaded through homebrew, which is a much,
much different IOS compared to the intended one (IOS 9 for launch titles, for
example).

By itself, this wouldn’t be a problem. However, as one might intuitively think,
Nintendo optimised the way data is read from the disc as time went on, and these
new changes were applied in newer |0S. Newer, bigger games could enjoy better
load times as the amount of data that needed to be read from disc became more and
more ambitious.

So what happens when you’re now loading a game made for I0S 9 into a clOS
based on I0S 577 All of these optimisations get applied and the load times become
faster than originally intended. This is great if you're playing casually, but it presents
a problem for speedrunning, since it breaks fairness to someone playing with no
homebrew.

And how can we fix it?

The problem stems not with homebrew itself, but the fact that we are loading the
games with an 10S that is not the one intended for them, which in turn causes load
times to act abnormal. Depending on the game, some other in-game behaviour could
be abnormal as well, but as far as | know, no games have a noticeable difference.

Using an ISO Loader that actually loads the correct |OS for the game, rather than
just default to 10S 249 can fix the issue immediately. One such loader is Gecko OS,
that just loads the game like the disc channel would, just going around the region
lock and any mandatory updates present in the disc.

ISO Loaders that default to IOS 249 can still be used, so long as they provide the
means to override that behaviour and load the correct I0S. Neogamma has a built-in
function to load the correct IOS for the game, and USB Loader GX allows one to
load the game from arbitrary |IOS slots, as long as it’s a high slot (200+).

We will now go over the particularities of each loader, and how to ensure fairness
with whatever setup you’re running. For the sake of completion, we will also briefly
go over the steps to install homebrew in your console, and help you understand what
each step is doing to ensure you know your way around.

Section 2: Setting up Homebrew

IMPORTANT: The steps below assume you have a regular Wii. If
you are using a WiiU (vWii) or a Wii Mini, please refer to the internet
for instructions on how to install homebrew, and how to organise
your IOS slots / install clOS.

To start off, you'll need to run an exploit on your Wii to load yourself into HackMii,
a simple app that will install the basics of homebrew into your console. Namely, the
Homebrew Channel (to load any custom app) and BootMii. Head over to
https://wii.guide/get-started and find the best exploit for your setup.

Once you get into HackMii, you’ll want to follow the steps over at
https://wii.quide/hbc to install the Homebrew Channel and follow some other brick
safety steps. This would install BootMii in I0S 254.

Keep in mind that installing clOS is entirely optional when it comes to fairness in
speedrunning. If you're only installing homebrew to circumvent region locking and
video patching, this is completely optional. If you do get around to installing clOS,
follow https://wii.quide/cios, keeping note of which slot you're installing each revision
to. The default installation goes as follows:

e |0S 249 becomes a patched I0S 57
e |0S 250 becomes a patched I0S 56
e |0S 251 becomes a patched I0S 38

5. When done installing, press A to return, and set the options to the Personally, | would forgo patching
foing |0S 38 on 10S 251, since it only adds
SelecO\gDS: V19 betes? zs-vio-betas? compatibility to very few games.
Maybe look up if the games you want
to play require that specific IOS to be
installed. Either way, you’ll want to

d2x CustomIOS) :
m::wum. know which of your 10S slots are

vacant, and which aren’t.

https://wii.guide/get-started
https://wii.guide/hbc
https://wii.guide/cios

Figuring out what I0S a game runs on

If this information isn’t quickly available through google search, or if you're uber
sceptical, you can check it with Neogamma (download link in Section 4), as it will
display this information when you are booting the game with its default settings.
Simply launch Neogamma and hit “Load game from DVD”, then stay on the lookout
for this message:

NTANTHNN =

Launching Game
Game ID: RKDIJEB
The requested I0S is: 1I0S =9

In the above example, we are loading a Japanese copy of Trauma Center:
Second Opinion, a launch title that uses 10S 9.

Copying stock IOS into arbitrary slots

Some ISO loaders allow you to load games using arbitrary 10S slots, and
specifically for USB Loader GX, it limits your choices to 10S 200 onwards. Why it
does this is unknown to me, since if the user knows what they’'re doing they would
know what to enter as the desired 10S. Regardless, this creates a need to copy over
some very old 10S into arbitrarily high slots so we can use them, since we can’t just
patch clOS on whatever IOS we desire.

We’'ll be taking Trauma Center: Second Opinion as our example here, it uses 10S
9. Refer to the previous subsection to figure out what IOS your game uses, and what
you should be copying over. In order to do this copying, we’'ll be using Wii Mod Lite
to install arbitrary things in arbitrary places, as it provides an interface to manage
your |OS slots. A download link can be found below:

https://qithub.com/RiiConnect24/Wii-Mod-Lite/releases/download/v1.7/WiiModLite
v1.7.zip

IMPORTANT: If you mess around in the following menus without
knowing what you’re doing, there is a chance of bricking your Wiii.
Please be very careful when installing arbitrary 10S. Remember this
is fully optional, and only required for fairness with USB Loader GX
- other loaders can load the correct IOS just fine.

Once Wii Mod Lite loads, enter the 10Ss menu, you’ll be greeted by a grid of
installed I0Ss on your Wii. If your Wii is fully updated, you can navigate to whatever
IOS your game uses and check the installed version, and some miscellaneous info
about the I0S. Below is the example for IOS 9 on a 4.3U Wii:

Select the I0S to manage. (I0Ss in are installed on this Wii)
(I0Ss in are clean)

5 N

59
Currently selected: 1039 Uersion installed: v1034
Latest: 01290 Latest non-stub: v1Z290(Not on NUS)

Description

Fakesign Bug (Trucha bug): Esldentify (ES_DiVerify):
sdev/flash (Flash access): USBZ Tree: boot2:
NAND Permissions: GetSysHenuVersion:

Hit A on the IOS for the game you want to load, you’ll be brought to a menu for
actions regarding that |0S. Head over to the Copy option to, well, copy its contents
elsewhere:

Currently selected: I0S9 Version installed: v1034
Latest: v1290 Latest non-stub: viZ90(Not on NUS)

Install 10S
Extract to Had
Delete 10S
--> Copy ~» Change Version ~ Patch 10S

https://github.com/RiiConnect24/Wii-Mod-Lite/releases/download/v1.7/WiiModLite_v1.7.zip
https://github.com/RiiConnect24/Wii-Mod-Lite/releases/download/v1.7/WiiModLite_v1.7.zip

It will then ask where you want to copy it to. The options it gives you are the most
common targets, all of which are valid so long as you don’t have other homebrew
installed there. In order to select an arbitrary slot, head over to the “Any” option and
hit left/right repeatedly until you have the right 10S slot highlighted. In this example,
we’re copying over I0S 9 to IOS slot 251. BE VERY CAREFUL WHEN SELECTING
ARBITRARY IOS SLOTS:

oselect location of I0S
202
222
223
236

249
250

-=> fAny I05: [LISyAy!
Press B to go back

Next it will ask what revision you would like to install it as. The default is to use
the same revision as the one you’re copying, but you can use any number you want.
Choosing 65535 will ensure it will override whatever is already present in that I0S
slot, if you know what you're doing and overwriting things:

Select I0S Revision
2
516
518
520
521
778
1034
1290
65535

Any [0S 3608
Go by 10s

Go by 100s
Go by 1000s

Finally, it will ask you what patches you want to apply to the IOS. Leaving it on all
defaults is fine. If you know what you’re doing or need a specific patch for your
scenario to work, feel free to change these:

Choose Patches for I0S 251

--> Apply FakeSign patch:
Apply NAND Permissions patch:
Apply ES_Identify patch:

Apply ticket version check patch:
Apply Setuid check patch:

Apply Korean Key patch:

Apply Set AHBPROT patch:

Now just wait for the system to patch the chosen IOS slot, shouldn’t take too
long. After this is done, you have successfully copied over the stock IOS into a
higher slot visible to most homebrew apps:

Mouving I0S 9 to 251

Reading Certs... done

Reading Ticket... done

Reading THD... done

Decrypting AES Title Key... dome

Processing content...

Adding content done

Adding content done

Reading file into memory complete.

Decrypting I0S...

Trucha signing the tnd...

Trucha signing the ticket..

Encrypting I0S...
- Deleting ticket file /ticket,00000001-000000fb.tik... OK!?
- Deleting title file ,titles00000001,000000fb... OK!?

Preparations complete

Installing........

Press any key to continue.

Section 3: Disc Channel and Gecko OS

Loading games through the Disc Channel is the ground truth to all load times
measurements for a given console, assuming of course nothing is modifying its
behaviour, such as some Priiloader settings. It has no additional configurations to be
wary of, just boot the game and go. It will not go around region locking, and for
games that do not support progressive scan, it will force interlaced scan. If you own
a Wii of the same region as the disc (such as a Japanese Wii for a Japanese game),
there’s usually no downside to using the disc channel.

Video Patching? Region Unlock?

No No

Gecko OS is a very simple ISO loader that just acts like a Disc Channel with no
region lock and a few video options to help some specific cases out. A link to its
page can be found below, and there is a link to download it.

Download: https://wiibrew.ora/wiki/Gecko OS

Gecko OS is a safe and easy choice for most games, since there are no special
concerns with 10S, it will always load the game’s correct 10S, rather than rely on
homebrew 10S. The video patching is kinda limited, as seen below you can force
some settings, but far from ideal for games like Trauma Center: Second Opinion that
do not support progressive scan:

Video Patching? Region Unlock?

Kinda Yes

Default
Force NTSC: YES
Force PALGO: NO
Force PAL50: NO
Gecko Hook Type: Default

Load Debugger: NO
SD File Patcher: NO
SD Cheats:

Gecko Pause Start:
Bubbles On:

Save Config

https://wiibrew.org/wiki/Gecko_OS

Section 4: Neogamma

Neogamma will load games using 10S 249 as default. It will make no attempt to
search for other available 10S in slots 200+, and cannot override the custom slot it
uses to load games with. It can, however, force itself to load the correct I0S for each
game, which is an amazing behaviour for speedrunning. It also provides a more
complete video patching tool, allowing any game to use progressive scan.

Video Patching? Region Unlock?

Yes Yes

Download: https://gbatemp.net/download/neogamma.27066/download

One note regarding 10S 249 is that if there are no clOS installed there, it will
detect that it is a stub with no functionality, and default to using the correct IOS for
the game. If you don’t have a clOS installed in slot 249, Neogamma is as reliable as
Gecko OS, booting games fairly without the need to configure anything.

Neogamma will also tell you if it has detected any clOS in IOS 249, note the
difference in the screenshots below. This can be very useful when verifying that
someone is running on a stub 10S 249, but keep in mind that this information can be
easily tampered with, and should not be used as definitive evidence that someone’s
IOS 249 is a clean stub:

NeoGamma R9 b56, 105249

NeoGamma RO b56, d2x57viObeta52 (249)

As mentioned, if running on a clean I0S 249, Neogamma already defaults to the
correct 10S, so the General and Wii Options would default to something like this:

Boot Lang: Console Default
Video Mode: Disc(default)

Patch Video: No

I0S for games Autodetect VIDT: Patch: st No
Storage device: SD using clos]Patch Country Str.: No

. Altern. .dol: No
Show Rebqoter. No Search patches: Yes
Save Config: No

Block 10S Reload: Yes

Return to Menu Return to Menu

https://gbatemp.net/download/neogamma.27066/download

If running a game without progressive scan support, or if messing around with
different video modes to better adapt to your situation, you can patch the video mode
as such in the Wii options. These settings have been tested and do NOT impact load
times in any meaningful way. In the example, we are patching a game to use NTSC
480p:

Boot Lang: Console Default
Video Mode: NTSC480p
Patch Video: All

VIDTV Patch: No

Patch Country Str.:

Altern. .dol:
Search patches:
Block 10S Reload:

Return to Menu

If you do have a clOS installed in slot 249, you will need to tell Neogamma to use
the correct I0S rather than its default one. This can be accomplished with the
following settings on the General and Wii tabs. In the example we also patch video to
NTSC 480p, and save config so we don’t have to remember to change these
settings every time we boot Neogamma:

Console Default
. NTSC480p
Patch Video: All

VIDTV Patch: No
I0S for games correct 10S Ipatch Country Str.: No

Storage device: SD using clOS Jaitern. .dol: No
Show Rebooter: No Search patches: No
Save Config: Yes Block 10S Reload: No

Return to Menu Return to Menu

The option “Block I0S Reload” is the one that allows Neogamma to change from
IOS 249 to whatever the correct 10S is. Technically leaving the option “IOS for
games” in “Autodetect” would work, but it's better to be safe than sorry.

Section 5: USB Loader GX

USB Loader GX, as the name implies, is primarily used to load games from USB
storage. It features the most options out of all loaders mentioned in this document,
and is built to ensure compatibility with whatever Wii is thrown in its way. Because of
this, it's the one that takes the most setup to ensure fairness in, starting with the fact
that we’ll be using it to load a disc rather than USB.

Download: https://sourceforge.net/projects/usbloadergx/files/latest/download

For starters, make sure you have a copy of your game’s |OS installed in a high
slot (anything above 200). In the examples below, we’ll assume a copy of 10S 9 is
installed in 10S 251 in order to launch Trauma Center: Second Opinion. If you don’t
have this setup, refer to Section 2, specifically the Copying stock 10S into arbitrary
slots section.

A warning for moderators: it is not possible to enforce this custom installation
process, as there is no way to guarantee the correct 10S is installed in whatever
arbitrary slot the player is using. Running a SysCheck will not show what is installed
in such a slot, and even if it did, that information is easily spoofed by someone that
knows what they’re doing.

Video Patching? Region Unlock?

Yes+ Yes

USB Loader GX offers the most options for video patching and region freeing, on
top of offering plenty of quality of life features for casual play, making it a stellar
option for those that do more than just speedrun on their Wii. As mentioned though,
there is some considerable work to make it have fair load times, that might be too
much trouble for some users.

Another important note for USB Loader GX: it specifically tries to load whatever is
in 10S 249 on boot, and if it fails to find anything, it will scan for any valid IOS in slots
200-255. If it still fails to find anything, it will automatically load 10S 58 with a few
custom patches into memory, so that even a Wii with no clOS installed can run
games from USB. Keep in mind that unlike Neogamma, it will always default to using
IOS 58 for all games in this scenario.

https://sourceforge.net/projects/usbloadergx/files/latest/download

Yet another important side effect to having no 10S installed on slot 249: if you
copied over the system’s stock 10S (like 9 or 33) into some high slot to load a game
with fair load times, but not have anything in slot 249, USB Loader GX will try to load
itself using the arbitrary slot you installed the stock IOS in, and most likely crash
itself. So you kinda need to have a clOS in slot 249 to make USB Loader GX behave
properly for this setup.

Once everything is setup, open USB Loader GX and click the disc icon to mount
the disc drive, then wait for the game to be recognized. Once loaded, head over to
“Settings” and into “Game Load”. You’ll want to change the setting “Game 10S” to
251 (or whatever slot you used) as shown:

Fo | Q| Aec o] 8| =1 |1 | gy 333 @
Forecast Channel
P % Homebrew Channel
Wii Shop «
Channel Mii Channel

m News Channel

yruALY | Photo Channel 1.1

W e =] 4
tw Wii Shop Channel
= .

Wii

Finally, if you want to apply any video patching for games that don’t natively
support progressive scan, or just changing it to better fit your setup, you can do it in
these settings as well:

. Game Load .

" Game Lock OFF

Favorite Level 0]

Video Mode Force NTSC480p
|> Dol Video Patch ON

480p Pixel Fix Patch Use global

Sneek Video Patch Use global
VIDTV Patch Use global
Aspect Ratio Use global

Patch Country Strings Use global

Section 6: References and Further Reading

WiiBrew page on I0S: https://wiibrew.org/wiki/lOS

WiiBrew page on /dev/di, the Wii’s disc driver: https://wiibrew.org/wiki//dev/di
WiiBrew page on a specific I0S, for referencing revisions and other data:
https://wiibrew.org/wiki/lOS9

GBATemp thread where these issues were originally discussed:
https://gbatemp.net/threads/d2x-cios-possibly-causing-faster-disc-load-times.
606642/

Homebrew guides with links to other documentation and support:
https://wii.quide/get-started

Joselle’s spreadsheet containing timings for Super Mario Galaxy using
different loaders:
https://docs.google.com/spreadsheets/d/178cRnPLYIJcSnNz8FpLbkVuMulQF
C-U2RGZ665LkSWY

Trauma Center speedrunning discord server, where all this discussion started:

https://discord.gg/h4gwmkY

https://wiibrew.org/wiki/IOS
https://wiibrew.org/wiki//dev/di
https://wiibrew.org/wiki/IOS9
https://gbatemp.net/threads/d2x-cios-possibly-causing-faster-disc-load-times.606642/
https://gbatemp.net/threads/d2x-cios-possibly-causing-faster-disc-load-times.606642/
https://wii.guide/get-started
https://docs.google.com/spreadsheets/d/178cRnPLYlJc5nNz8FpLbkVuMuIQFC-U2RGZ665Lk5WY
https://docs.google.com/spreadsheets/d/178cRnPLYlJc5nNz8FpLbkVuMuIQFC-U2RGZ665Lk5WY
https://discord.gg/h4qwmkY

