
Final Project Report for CS 184A/284A, Fall 2023

Project Title: SenNet + HOA - Hacking the Human Vasculature in 3D​
Project Number: Canvas Group 35 / Presentation 2023/12/04 Group 3​
GitHub Repository: https://github.com/Nitro1231/SenNet-HOA-Hacking-the-Human-Vasculature-in-3D

Student Name(s)

●​ HyunJun Park, 60978255, hyunjup4@uci.edu

●​ Rohan Gupta, 31375533, rohang5@uci.edu

1. Introduction and Problem Statement

In the realm of medical imaging and analysis, the precise segmentation of blood vessels in 3D

images of human organs has been spotlighted in recent years and has become an area of active research.

Unfortunately, the current way of labeling vascular segmentation is a time-consuming and

labor-intensive process, as it requires manual labeling. This manual process not only slows down

research but also suffers from a lack of generalizability and consistency across different datasets.

Our project, SenNet + HOA - Hacking the Human Vasculature in 3D1, aims to address this

challenge by developing a model that can accurately and efficiently predict vascular structures from

advanced Hierarchical Phase-Contrast Tomography (HiP-CT) 3D scan images. To address this, our project

utilizes a Convolutional Neural Network (CNN) with an Attention U-Net architecture, known for its

efficacy in medical image segmentation tasks. The Attention U-Net model is designed to work by

providing precise localizations of the segmented areas. The model's performance is evaluated using the

Surface Dice Metric, a metric specifically chosen for its ability to measure the similarity between the

predicted and actual segmentation masks. By automating the segmentation process while maintaining

high accuracy, our project aims to significantly contribute to the field of medical imaging, aiding in a

better understanding of vascular structures and potentially impacting diagnostic and therapeutic

procedures.

2. Related Work

The field of medical image segmentation has seen various approaches, mostly using

Convolutional Neural Networks (CNNs) due to their effectiveness in handling image data. Historically,

approaches like Convolutional Neural Networks (CNNs) have been utilized for image segmentation tasks.

One example of this was a Mask Regional Convolutional Neural Network (MaskRCNN) used to segment

human kidneys and delineate the kidney into 12 classes, whose results were published in a study in

2021. Results of the study suggested that there is potential for the model to perform, however, it was

too challenging to identify specific parts of the kidney because of the low signal-to-noise ratio in the

images. Their model consisted of using 3 sequential CNNs, one to get an aligned set of Region of Interest

(RoI), one to classify the boundary box from each RoI, and the last to identify the RoI’s class and mask.

However, for the specific challenge of blood vessel segmentation, the U-Net architecture, a different

type of CNN, could be more effective.

1 Yashvardhan Jain, Katy Borner, Claire Walsh, Nancy Ruschman, Peter D. Lee, Griffin M. Weber, Ryan Holbrook, Addison Howard.
(2023). SenNet + HOA - Hacking the Human Vasculature in 3D. Kaggle.
https://kaggle.com/competitions/blood-vessel-segmentation.

https://www.kaggle.com/competitions/blood-vessel-segmentation
http://docs.google.com/presentation/d/1veo1HxeDaX2ksUPXF3ImG_mYxrIeA2ue3EE8Fw5i5Ec/edit?usp=sharing
https://github.com/Nitro1231/SenNet-HOA-Hacking-the-Human-Vasculature-in-3D
mailto:hyunjup4@uci.edu
mailto:rohang5@uci.edu
https://kaggle.com/competitions/blood-vessel-segmentation

Another significant approach is the U-Net architecture, which is known as effective for medical

image segmentation tasks.2 U-Net's architecture, designed specifically for biomedical image

segmentation, offers an advantage in detailed and nuanced tasks like blood vessel segmentation. Our

project builds upon these foundational works, focusing on the U-Net model for its superior performance

in segmenting complicated structures within 3D medical images. In our project, we decided to develop

an improved version of U-Net architecture by adding an attention block to the skip connection, focusing

on only important parts and discarding unrelated features of the image.

3. Data Sets

Our project uses a dataset provided by the Kaggle competition. The provided dataset is a

collection of high-resolution HiP-CT 3D images of human kidneys and corresponding blood vessel

segmentation masks. The dataset is available here

(https://www.kaggle.com/competitions/blood-vessel-segmentation/data).

Dataset Composition and Structure:

The dataset is structured into two primary sets: the training and test sets. It contains

approximately five kidneys, represented through a series of 2D images. Each image is a top-down TIFF

scan, representing a 2D slice of the 3D kidney volume.

●​ train/{dataset}/images - Contains top-down TIFF scans from several kidney datasets, each

representing a 2D slice of a 3D volume.

●​ train/{dataset}/labels - Contains blood vessel segmentation masks in TIFF format. The folder

contains kidney_1_dense, kidney_1_voi, kidney_2, kidney_3_dense, and kidney_3_sparse

subsets, each varying in resolution and segmentation detail.

●​ test/{dataset}/images - Contains the TIFF scans for the test set. These scans may or may not use

a different beamline or resolution from the scans used in the training set.

Dataset Size and Accessibility:

●​ The dataset is quite large, with a total size of 43.52 GB and a total of 14.4K files.

●​ It is licensed under Attribution 4.0 International (CC BY 4.0).

Image Data Preprocessing and Transformation:

We applied the following transforms to the original images for more accurate train results:

●​ Resizing: Resize the original image to the fixed size of 256x256 pixels sizes. This standardization

is essential for ensuring consistent input dimensions for the neural network model.

●​ Flipping: A random horizontal flip and vertical flip are applied to increase the diversity of the

training data and help the model learn invariant features.

●​ Shift, Scale, Rotate: Randomly shifts, scales, and rotates the image to increase the diversity of

the training data and help the model learn invariant features.

●​ Random Cropping: Ensures that the model focuses on different regions of the image, enhancing

its ability to detect features irrespective of their location.

2 Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” arXiv.Org, 18 May 2015,
https://arxiv.org/abs/1505.04597.

https://www.kaggle.com/competitions/blood-vessel-segmentation/data
https://www.kaggle.com/competitions/blood-vessel-segmentation/data
https://arxiv.org/abs/1505.04597

●​ Brightness Variation: Randomly adjusts the brightness of the image, allowing the model to

handle images with varying lighting conditions.

●​ Blurring: Introduces blur to image. This also introduced diversity of the training data.

Example of original and processed HiP-CT scan images and blood vessel segmentation masks:

4. Description of Technical Approach

Model: Attention U-Net Architecture

 The general structure of our Attention U-Net is to use several encoder layers (downsampling) to

gather features from the original dataset, and then use symmetrical decoder layers (upsampling) to

determine the segment mask. When upsampling, corresponding encoder outputs will be concatenated

before being processed, making segmentation more accurate.

(Image from https://geeksforgeeks.org/u-net-architecture-explained/)

https://geeksforgeeks.org/u-net-architecture-explained/

The intuition behind this model is that the decoder layers have more semantic information, such as the

area that circles around the object, while the encoder layers likely have more spatial information, such as

the specific pixels corresponding to the object.

To improve our model further, we decided to integrate the original U-Net architecture with

attention blocks, which allows our model to focus on certain parts of the input data. The attention

mechanism is applied to the present and corresponding convolution layer, allowing our model to

selectively focus on relevant regions of the input image. This enhances the model's ability to identify and

segment target structures with complex backgrounds. Each down convolution layer is performed using 2

convolution blocks, where each block consists of a Conv2d, BatchNorm2d, and ReLU activation function.

In between each down convolution layer, we perform one max pool. Each up convolution layer consists

of one Upsample, Conv2d, BatchNorm2d, and a ReLU activation function. After one up convolution, we

acquire the attention block from the current up convolution and the corresponding down convolution.

Each attention block consists of putting the two inputs in a convolution block, concatenating the results,

and putting them through another convolution block. This result is then concatenated with the current

up convolution and then finally passed to a convolution block, which ends one of our up convolution

layers. In our final model, we have 6 down convolution layers and 6 up convolution layers. Consequently,

there are 5 attention blocks. Each layer alters the number of channels by a factor of 2, starting with

convoluting the initial 3 channel 256 by 256 pixel image to 32 channels.

(Image from “Attention U-Net: Learning Where to Look for the Pancreas,” https://arxiv.org/pdf/1804.03999.pdf)

Loss Function: Focal Loss

We picked Focal Loss as our primary loss function instead of using the generic Cross Entropy

Loss. This choice was driven by the need to address the class imbalance prevalent in our dataset, where

most pixels do not represent blood vessels. It focuses on hard-to-classify examples, giving more weight

to incorrectly classified instances. The implementation of Focal Loss in our project is a modified version

of binary cross-entropy, providing a balanced approach to handling class imbalance.

Evaluator: Surface Dice Coefficient

​ The evaluator we used was the surface dice coefficient, which is a variation of the dice

coefficient. In the context of segmentation mask similarity, the dice coefficient is modified to take the

agreement between the surfaces of two segmented regions instead of their entire volumes. We were

given a function implementation of calculating the dice coefficient within the Kaggle Competition, but

https://arxiv.org/pdf/1804.03999.pdf

the derivation is quite simple. It is 2 times the intersection between the predicted and actual mask

divided by their union.

5. Software

We used PyTorch, a machine learning framework, to implement our Attention U-Net. We

referenced an Attention U-Net: Learning Where to Look for the Pancreas3 research and Attention-Gated

U-Net notebook4 posted on the Kaggle site by Aniket Patil for creating scripts necessary for data

processing, displaying data, and learning conventional ways to set up our layers and forward methods.

We started with defining our custom PyTorch Dataset, which makes it easier to access unorganized

original HiP-CT images and segmentation masks. This dataset is also designed to apply image transform

on load. We then used Pytorch DataLoader to convert data files into tensors, which we referenced from

Homework 3 from this class. We used OpenCV and Numpy to read, resize, and normalize each data

image. Following this, we used the package albumentations to augment our images, which consisted of

resizing, flipping, rotating, cropping, varying brightness, and blur to create 250x250 grayscale training

images. Because neither of us had experience in conventional techniques used for augmenting images,

we verified and used the general structure of the augmentation done in the referenced in the

Attention-Gated U-Net notebook posted on the Kaggle site. The entire data preprocessing and

augmentation was referenced by the model mentioned above. We displayed the images using

matplotlib, which we have used in many classes throughout UCI. Our PyTorch attention model had 3

submodels: one for Down Convolution, Up Convolution, and the Attention Gate. We learned of this

structure from the reference model mentioned previously. Most convolution blocks consisted of several

Conv2ds, BatchNorm2ds, and ReLU. This general structure was adapted from our homework 3

assignments. For the evaluator, we used the Surface Dice Coefficient, which is often used in medical

image analysis to quantify the similarity between two surfaces and is particularly useful for assessing the

accuracy of segmentation in 3D images. The function to generate the dice coefficient was provided to us

in the Kaggle description. We used a variant of Cross Entropy Loss called Focal Loss, which adds a factor

to focus training on the hard negatives, which was also referenced from Aniket Patil’s posted notebook.

For the optimizer, we used the Adam optimizer provided by the PyTorch library with a learning rate of

0.0001. After training, we stored our training/validation results using pandas and our trained model

using PyTorch for later use. We displayed our results using matplotlib conventions, and we were

provided with a function by the Kaggle competition to generate the run length encoding of our validation

kidney results, which was necessary for our submission.

6. Experiments and Evaluation

The foundation of our experimentation lies in a dataset comprising three kidneys (5 folders) for

training and two for testing. However, a unique challenge arises with the test kidneys as they lack

associated labels or segmentation masks. To overcome this limitation, we chose a cross-validation

approach to assess our model's progress. The training dataset was partitioned into 70% for training and

30% for testing. In our initial model iteration, we opted for a U-Net architecture with only two layers to

establish a baseline. The model's layers encompassed convolution blocks transforming images from 1

4 Patil, Aniket. “Sennet+Hoa: Seg.: Pytorch: Attention-Gated U-Net.” Kaggle, Kaggle, 27 Nov. 2023,
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-U-Net.

3 Oktay, Ozan, et al. “Attention U-Net: Learning Where to Look for the Pancreas.” arXiv.Org, 20 May 2018,
https://arxiv.org/abs/1804.03999.

https://arxiv.org/abs/1804.03999
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://www.kaggle.com/aniketkolte04
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://www.kaggle.com/aniketkolte04
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://arxiv.org/abs/1804.03999

channel to 64 and finally back to 1 channel. As anticipated, this rudimentary model exhibited the poorest

accuracy, with a surface dice coefficient hovering around 0.15. With a modest training duration of 15

epochs, both train and validation accuracies indicated the potential for convergence with additional

epochs. To further the model's complexity, we expanded the number of layers to five and extended the

training duration to 20 epochs. Accompanying this, we chose to reduce channel dimensions by a factor

of 2. The image, which initially starts with 1 channel, underwent up-convolution five times to reach 1024

channels and subsequently underwent five down-convolutions with attention to attain 1 channel.

Despite this model's significant advancement, achieving a surface dice coefficient of about 0.41, a

challenge surfaced during hyperparameter tuning. The prediction mask consistently resembled the

processed mask, creating ambiguity in discerning overfitting or underfitting. The similarity between

validation and training dice coefficients compounded this because neither showed us signs of what

direction to move next. This dilemma prompted a critical evaluation of our five-layer model's

capabilities, leading us to believe that we might have reached close to the maximum efficiency for this

model, limiting its potential as a more accurate classifier.

Prediction mask with 5 layer U-Net: 0.003% error rate, but only a 0.41 surface dice coefficient

Despite taking approximately three hours to train, the results indicated room for more

complexity. In response, we developed our final model, incorporating six layers, thereby increasing both

complexity and training time to over four hours. In crafting this conclusive model, we stuck with a

maximum channel size of 1024, but introduced a novel approach in the initial convolution by reducing it

to 32 channels instead of 64. A subsequent last up-convolution layer transformed the image from 32 to 1

channel, while the preceding layer adapted to convolute the image from 64 to 32 channels. This strategic

alteration aimed to introduce an additional attention layer, hopefully having a strong impact between

the initial convolution and the final result of our U-Net. The intention behind this adjustment was rooted

in avoiding potential overfitting associated with increasing channels from 1024 to 2048, a consideration

that led us to opt for a smaller layer. The model already almost had a 0% error rate, but a coefficient of

0.41 steered us away from increasing the number of channels. The results from this model surpassed

expectations, boasting a train and validation dice coefficient of 0.66. Intriguingly, when we displayed the

surface dice coefficient against epochs, it became evident that more convergence was possible even

after 20 epochs. Subsequently, we extended the training duration to 25 epochs, requiring five hours, and

observed the validation dice coefficients almost reach 0.7. The careful consideration of hyperparameters,

layer complexities, and training durations collectively contributed to the evolution of our model,

culminating in a robust and fairly accurate segmentation tool for kidney images.

Training and Validation loss with 6 layer U-Net

Prediction mask with 6 layer U-Net: 0.002% error rate, and ~0.7 surface dice coefficient

7. Discussion and Conclusion​
​ Unlike our initial expectations, the model achieved a dice coefficient of around 0.7 and minimal

training and validation loss, close to 0. This was a surprising outcome, especially considering the

complexity and size of the dataset we worked with. It highlighted the effectiveness of the Attention

U-Net in terms of handling complex imaging tasks such as medical image segmentation. We touched on

the U-Net architecture slightly in class, but we had never heard of the Attention U-Net architecture

before this project. It made the concatenation of the corresponding layers much more complex and was

likely a huge factor in our decent results. We were definitely surprised by the results of our model. This

was the first time either of us trained a CNN model on such a huge and complicated dataset, and after

transitioning from homework 3, we didn’t expect the accuracy to be anywhere close to 0%, even if that

wasn’t our primary evaluator. However, the project also exposed the limitations inherent in current CNN

models, particularly in terms of computational resources and time. One severe bottleneck of this

problem was the time it took to train the model when it was clear we had to increase the number of

layers and the number of epochs. Our final model, which took 5 hours to run, definitely showed

indications of having better results if we were to increase the number of layers and epochs. If we had

more time to do so, we think this model would reach a dice coefficient close to one. Looking forward, If

we were in charge of a research lab, we would focus on exploring ways to optimize the efficiency of our

model. Investigating methods to reduce training time without compromising accuracy would be a key

area of interest. Additionally, we would dive into the feature retrieval in each individual layer to

understand how each layer affects our final mask. To do this, we would need to learn how to understand

and translate the channel's weights into a representation of the features it can find. Doing so would

allow us to tune individual layers and likely find evidence toward increasing or decreasing the number of

layers or convolutions. These approaches, while ambitious, could significantly advance the field of

medical imaging and beyond, leveraging the full potential of CNNs in complex segmentation tasks.

8. A separate page on Individual Contributions

HyunJun Park

In our project, I believe that Rohan and I achieved a well-balanced distribution of tasks and

responsibilities. As a team, we spent considerable time discussing the problem and brainstorming

potential solutions. Regarding individual contributions, I felt that both of us did best for our

responsibilities, and equality contributing to the project. Personally, I believe that I focused more on the

dataset and data pre-processing, while Rohan mainly focused on model improvement and preparing the

final project presentation. This division allowed us to leverage our individual strengths while maintaining

a collaborative effort throughout the project. We worked together on improving the code, model

parameter tuning, and finalizing both the written and oral presentations, ensuring a balanced

contribution from each of us.

Rohan Gupta

I believe HyunJun and I contributed an equal amount of work towards this project. We spent

time together to understand this problem and look for potential solutions on both the Kaggle site and

through outside resources. Upon deciding on our model, HyunJun was primarily responsible for

processing and augmenting the dataset and formulating the structure of the notebook and the libraries

we used. Most of the parts I worked on consisted of designing and tuning the Model and the

corresponding training, loss, and evaluator functions. I was primarily looking at our evaluators and

graphs and advising/implementing what step we should take next. We both spent an equal amount of

time writing the project proposal, presentation slides, and the final report.​

References

Adejare, Adebayo. “EDA + TF-Keras Starter - Vasculature Segmention.” Kaggle, Kaggle, 27 Nov.

2023, https://www.kaggle.com/code/adebayo/eda-tf-keras-starter-vasculature-segmention.

Oktay, Ozan, et al. “Attention U-Net: Learning Where to Look for the Pancreas.” arXiv.Org, 20

May 2018, https://arxiv.org/abs/1804.03999.

Overgaard Lauersen, Mathilde, et al. “Kidney segmentation for quantitative analysis applying

MASKRCNN architecture.” 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021,

https://doi.org/10.1109/ssci50451.2021.9660052.

Patil, Aniket. “Sennet+Hoa: Seg.: Pytorch: Attention-Gated U-Net.” Kaggle, Kaggle, 27 Nov. 2023,

https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-U-Net.

Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation.”

arXiv.Org, 18 May 2015, https://arxiv.org/abs/1505.04597.

rupert ai. “The U-Net (Actually) Explained in 10 Minutes.” YouTube, YouTube, 5 May 2023,

https://www.youtube.com/watch?v=NhdzGfB1q74.

Yashvardhan Jain, Katy Borner, Claire Walsh, Nancy Ruschman, Peter D. Lee, Griffin M. Weber,

Ryan Holbrook, Addison Howard. (2023). SenNet + HOA - Hacking the Human Vasculature in 3D. Kaggle.

https://kaggle.com/competitions/blood-vessel-segmentation.

https://www.kaggle.com/code/adebayo/eda-tf-keras-starter-vasculature-segmention
https://arxiv.org/abs/1804.03999
https://doi.org/10.1109/ssci50451.2021.9660052
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-unet
https://arxiv.org/abs/1505.04597
https://www.youtube.com/watch?v=NhdzGfB1q74
https://kaggle.com/competitions/blood-vessel-segmentation

