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1. Introduction and Problem Statement 

In the realm of medical imaging and analysis, the precise segmentation of blood vessels in 3D 

images of human organs has been spotlighted in recent years and has become an area of active research. 

Unfortunately, the current way of labeling vascular segmentation is a time-consuming and 

labor-intensive process, as it requires manual labeling. This manual process not only slows down 

research but also suffers from a lack of generalizability and consistency across different datasets. 

Our project, SenNet + HOA - Hacking the Human Vasculature in 3D1, aims to address this 

challenge by developing a model that can accurately and efficiently predict vascular structures from 

advanced Hierarchical Phase-Contrast Tomography (HiP-CT) 3D scan images. To address this, our project 

utilizes a Convolutional Neural Network (CNN) with an Attention U-Net architecture, known for its 

efficacy in medical image segmentation tasks. The Attention U-Net model is designed to work by 

providing precise localizations of the segmented areas. The model's performance is evaluated using the 

Surface Dice Metric, a metric specifically chosen for its ability to measure the similarity between the 

predicted and actual segmentation masks. By automating the segmentation process while maintaining 

high accuracy, our project aims to significantly contribute to the field of medical imaging, aiding in a 

better understanding of vascular structures and potentially impacting diagnostic and therapeutic 

procedures. 

2. Related Work 

The field of medical image segmentation has seen various approaches, mostly using 

Convolutional Neural Networks (CNNs) due to their effectiveness in handling image data. Historically, 

approaches like Convolutional Neural Networks (CNNs) have been utilized for image segmentation tasks. 

One example of this was a Mask Regional Convolutional Neural Network (MaskRCNN) used to segment 

human kidneys and delineate the kidney into 12 classes, whose results were published in a study in 

2021. Results of the study suggested that there is potential for the model to perform, however, it was 

too challenging to identify specific parts of the kidney because of the low signal-to-noise ratio in the 

images. Their model consisted of using 3 sequential CNNs, one to get an aligned set of Region of Interest 

(RoI), one to classify the boundary box from each RoI, and the last to identify the RoI’s class and mask. 

However, for the specific challenge of blood vessel segmentation, the U-Net architecture, a different 

type of CNN, could be more effective. 

1 Yashvardhan Jain, Katy Borner, Claire Walsh, Nancy Ruschman, Peter D. Lee, Griffin M. Weber, Ryan Holbrook, Addison Howard. 
(2023). SenNet + HOA - Hacking the Human Vasculature in 3D. Kaggle. 
https://kaggle.com/competitions/blood-vessel-segmentation. 
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Another significant approach is the U-Net architecture, which is known as effective for medical 

image segmentation tasks.2 U-Net's architecture, designed specifically for biomedical image 

segmentation, offers an advantage in detailed and nuanced tasks like blood vessel segmentation. Our 

project builds upon these foundational works, focusing on the U-Net model for its superior performance 

in segmenting complicated structures within 3D medical images. In our project, we decided to develop 

an improved version of U-Net architecture by adding an attention block to the skip connection, focusing 

on only important parts and discarding unrelated features of the image. 

3. Data Sets 

Our project uses a dataset provided by the Kaggle competition. The provided dataset is a 

collection of high-resolution HiP-CT 3D images of human kidneys and corresponding blood vessel 

segmentation masks. The dataset is available here 

(https://www.kaggle.com/competitions/blood-vessel-segmentation/data). 

Dataset Composition and Structure: 

The dataset is structured into two primary sets: the training and test sets. It contains 

approximately five kidneys, represented through a series of 2D images. Each image is a top-down TIFF 

scan, representing a 2D slice of the 3D kidney volume. 

●​ train/{dataset}/images - Contains top-down TIFF scans from several kidney datasets, each 

representing a 2D slice of a 3D volume. 

●​ train/{dataset}/labels - Contains blood vessel segmentation masks in TIFF format. The folder 

contains kidney_1_dense, kidney_1_voi, kidney_2, kidney_3_dense, and kidney_3_sparse 

subsets, each varying in resolution and segmentation detail. 

●​ test/{dataset}/images - Contains the TIFF scans for the test set. These scans may or may not use 

a different beamline or resolution from the scans used in the training set. 

Dataset Size and Accessibility: 

●​ The dataset is quite large, with a total size of 43.52 GB and a total of 14.4K files. 

●​ It is licensed under Attribution 4.0 International (CC BY 4.0). 

Image Data Preprocessing and Transformation: 

We applied the following transforms to the original images for more accurate train results: 

●​ Resizing: Resize the original image to the fixed size of 256x256 pixels sizes. This standardization 

is essential for ensuring consistent input dimensions for the neural network model. 

●​ Flipping: A random horizontal flip and vertical flip are applied to increase the diversity of the 

training data and help the model learn invariant features. 

●​ Shift, Scale, Rotate: Randomly shifts, scales, and rotates the image to increase the diversity of 

the training data and help the model learn invariant features. 

●​ Random Cropping: Ensures that the model focuses on different regions of the image, enhancing 

its ability to detect features irrespective of their location. 

2 Ronneberger, Olaf, et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” arXiv.Org, 18 May 2015, 
https://arxiv.org/abs/1505.04597. 
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●​ Brightness Variation: Randomly adjusts the brightness of the image, allowing the model to 

handle images with varying lighting conditions. 

●​ Blurring: Introduces blur to image. This also introduced diversity of the training data. 

Example of original and processed HiP-CT scan images and blood vessel segmentation masks: 

 

4. Description of Technical Approach 

Model: Attention U-Net Architecture 

 The general structure of our Attention U-Net is to use several encoder layers (downsampling) to 

gather features from the original dataset, and then use symmetrical decoder layers (upsampling) to 

determine the segment mask. When upsampling, corresponding encoder outputs will be concatenated 

before being processed, making segmentation more accurate. 

 

(Image from https://geeksforgeeks.org/u-net-architecture-explained/) 
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The intuition behind this model is that the decoder layers have more semantic information, such as the 

area that circles around the object, while the encoder layers likely have more spatial information, such as 

the specific pixels corresponding to the object. 

To improve our model further, we decided to integrate the original U-Net architecture with 

attention blocks, which allows our model to focus on certain parts of the input data. The attention 

mechanism is applied to the present and corresponding convolution layer, allowing our model to 

selectively focus on relevant regions of the input image. This enhances the model's ability to identify and 

segment target structures with complex backgrounds. Each down convolution layer is performed using 2 

convolution blocks, where each block consists of a Conv2d, BatchNorm2d, and ReLU activation function. 

In between each down convolution layer, we perform one max pool. Each up convolution layer consists 

of one Upsample, Conv2d, BatchNorm2d, and a ReLU activation function. After one up convolution, we 

acquire the attention block from the current up convolution and the corresponding down convolution. 

Each attention block consists of putting the two inputs in a convolution block, concatenating the results, 

and putting them through another convolution block. This result is then concatenated with the current 

up convolution and then finally passed to a convolution block, which ends one of our up convolution 

layers. In our final model, we have 6 down convolution layers and 6 up convolution layers. Consequently, 

there are 5 attention blocks. Each layer alters the number of channels by a factor of 2, starting with 

convoluting the initial 3 channel 256 by 256 pixel image to 32 channels. 

 

(Image from “Attention U-Net: Learning Where to Look for the Pancreas,” https://arxiv.org/pdf/1804.03999.pdf) 

Loss Function: Focal Loss 

We picked Focal Loss as our primary loss function instead of using the generic Cross Entropy 

Loss. This choice was driven by the need to address the class imbalance prevalent in our dataset, where 

most pixels do not represent blood vessels. It focuses on hard-to-classify examples, giving more weight 

to incorrectly classified instances. The implementation of Focal Loss in our project is a modified version 

of binary cross-entropy, providing a balanced approach to handling class imbalance. 

Evaluator: Surface Dice Coefficient 

​ The evaluator we used was the surface dice coefficient, which is a variation of the dice 

coefficient. In the context of segmentation mask similarity, the dice coefficient is modified to take the 

agreement between the surfaces of two segmented regions instead of their entire volumes. We were 

given a function implementation of calculating the dice coefficient within the Kaggle Competition, but 
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the derivation is quite simple. It is 2 times the intersection between the predicted and actual mask 

divided by their union. 

5. Software 

We used PyTorch, a machine learning framework, to implement our Attention U-Net. We 

referenced an Attention U-Net: Learning Where to Look for the Pancreas3 research and Attention-Gated 

U-Net notebook4 posted on the Kaggle site by Aniket Patil for creating scripts necessary for data 

processing, displaying data, and learning conventional ways to set up our layers and forward methods. 

We started with defining our custom PyTorch Dataset, which makes it easier to access unorganized 

original HiP-CT images and segmentation masks. This dataset is also designed to apply image transform 

on load. We then used Pytorch DataLoader to convert data files into tensors, which we referenced from 

Homework 3 from this class. We used OpenCV and Numpy to read, resize, and normalize each data 

image. Following this, we used the package albumentations to augment our images, which consisted of 

resizing, flipping, rotating, cropping, varying brightness, and blur to create 250x250 grayscale training 

images. Because neither of us had experience in conventional techniques used for augmenting images, 

we verified and used the general structure of the augmentation done in the referenced in the 

Attention-Gated U-Net notebook posted on the Kaggle site. The entire data preprocessing and 

augmentation was referenced by the model mentioned above. We displayed the images using 

matplotlib, which we have used in many classes throughout UCI. Our PyTorch attention model had 3 

submodels: one for Down Convolution, Up Convolution, and the Attention Gate. We learned of this 

structure from the reference model mentioned previously. Most convolution blocks consisted of several 

Conv2ds, BatchNorm2ds, and ReLU. This general structure was adapted from our homework 3 

assignments. For the evaluator, we used the Surface Dice Coefficient, which is often used in medical 

image analysis to quantify the similarity between two surfaces and is particularly useful for assessing the 

accuracy of segmentation in 3D images. The function to generate the dice coefficient was provided to us 

in the Kaggle description. We used a variant of Cross Entropy Loss called Focal Loss, which adds a factor 

to focus training on the hard negatives, which was also referenced from Aniket Patil’s posted notebook. 

For the optimizer, we used the Adam optimizer provided by the PyTorch library with a learning rate of 

0.0001. After training, we stored our training/validation results using pandas and our trained model 

using PyTorch for later use. We displayed our results using matplotlib conventions, and we were 

provided with a function by the Kaggle competition to generate the run length encoding of our validation 

kidney results, which was necessary for our submission. 

6. Experiments and Evaluation 

The foundation of our experimentation lies in a dataset comprising three kidneys (5 folders) for 

training and two for testing. However, a unique challenge arises with the test kidneys as they lack 

associated labels or segmentation masks. To overcome this limitation, we chose a cross-validation 

approach to assess our model's progress. The training dataset was partitioned into 70% for training and 

30% for testing. In our initial model iteration, we opted for a U-Net architecture with only two layers to 

establish a baseline. The model's layers encompassed convolution blocks transforming images from 1 

4 Patil, Aniket. “Sennet+Hoa: Seg.: Pytorch: Attention-Gated U-Net.” Kaggle, Kaggle, 27 Nov. 2023, 
https://www.kaggle.com/code/aniketkolte04/sennet-hoa-seg-pytorch-attention-gated-U-Net. 

3 Oktay, Ozan, et al. “Attention U-Net: Learning Where to Look for the Pancreas.” arXiv.Org, 20 May 2018, 
https://arxiv.org/abs/1804.03999. 
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channel to 64 and finally back to 1 channel. As anticipated, this rudimentary model exhibited the poorest 

accuracy, with a surface dice coefficient hovering around 0.15. With a modest training duration of 15 

epochs, both train and validation accuracies indicated the potential for convergence with additional 

epochs. To further the model's complexity, we expanded the number of layers to five and extended the 

training duration to 20 epochs. Accompanying this, we chose to reduce channel dimensions by a factor 

of 2. The image, which initially starts with 1 channel, underwent up-convolution five times to reach 1024 

channels and subsequently underwent five down-convolutions with attention to attain 1 channel. 

Despite this model's significant advancement, achieving a surface dice coefficient of about 0.41, a 

challenge surfaced during hyperparameter tuning. The prediction mask consistently resembled the 

processed mask, creating ambiguity in discerning overfitting or underfitting. The similarity between 

validation and training dice coefficients compounded this because neither showed us signs of what 

direction to move next. This dilemma prompted a critical evaluation of our five-layer model's 

capabilities, leading us to believe that we might have reached close to the maximum efficiency for this 

model, limiting its potential as a more accurate classifier.  

    

Prediction mask with 5 layer U-Net: 0.003% error rate, but only a 0.41 surface dice coefficient 

Despite taking approximately three hours to train, the results indicated room for more 

complexity. In response, we developed our final model, incorporating six layers, thereby increasing both 

complexity and training time to over four hours. In crafting this conclusive model, we stuck with a 

maximum channel size of 1024, but introduced a novel approach in the initial convolution by reducing it 

to 32 channels instead of 64. A subsequent last up-convolution layer transformed the image from 32 to 1 

channel, while the preceding layer adapted to convolute the image from 64 to 32 channels. This strategic 

alteration aimed to introduce an additional attention layer, hopefully having a strong impact between 

the initial convolution and the final result of our U-Net. The intention behind this adjustment was rooted 

in avoiding potential overfitting associated with increasing channels from 1024 to 2048, a consideration 

that led us to opt for a smaller layer. The model already almost had a 0% error rate, but a coefficient of 

0.41 steered us away from increasing the number of channels. The results from this model surpassed 

expectations, boasting a train and validation dice coefficient of 0.66. Intriguingly, when we displayed the 

 



surface dice coefficient against epochs, it became evident that more convergence was possible even 

after 20 epochs. Subsequently, we extended the training duration to 25 epochs, requiring five hours, and 

observed the validation dice coefficients almost reach 0.7. The careful consideration of hyperparameters, 

layer complexities, and training durations collectively contributed to the evolution of our model, 

culminating in a robust and fairly accurate segmentation tool for kidney images. 

 

Training and Validation loss with 6 layer U-Net 

 

 

Prediction mask with 6 layer U-Net: 0.002% error rate, and ~0.7 surface dice coefficient 

 

 



7. Discussion and Conclusion​
​ Unlike our initial expectations, the model achieved a dice coefficient of around 0.7 and minimal 

training and validation loss, close to 0. This was a surprising outcome, especially considering the 

complexity and size of the dataset we worked with. It highlighted the effectiveness of the Attention 

U-Net in terms of handling complex imaging tasks such as medical image segmentation. We touched on 

the U-Net architecture slightly in class, but we had never heard of the Attention U-Net architecture 

before this project. It made the concatenation of the corresponding layers much more complex and was 

likely a huge factor in our decent results. We were definitely surprised by the results of our model. This 

was the first time either of us trained a CNN model on such a huge and complicated dataset, and after 

transitioning from homework 3, we didn’t expect the accuracy to be anywhere close to 0%, even if that 

wasn’t our primary evaluator. However, the project also exposed the limitations inherent in current CNN 

models, particularly in terms of computational resources and time. One severe bottleneck of this 

problem was the time it took to train the model when it was clear we had to increase the number of 

layers and the number of epochs. Our final model, which took 5 hours to run, definitely showed 

indications of having better results if we were to increase the number of layers and epochs. If we had 

more time to do so, we think this model would reach a dice coefficient close to one. Looking forward, If 

we were in charge of a research lab, we would focus on exploring ways to optimize the efficiency of our 

model. Investigating methods to reduce training time without compromising accuracy would be a key 

area of interest. Additionally, we would dive into the feature retrieval in each individual layer to 

understand how each layer affects our final mask. To do this, we would need to learn how to understand 

and translate the channel's weights into a representation of the features it can find. Doing so would 

allow us to tune individual layers and likely find evidence toward increasing or decreasing the number of 

layers or convolutions. These approaches, while ambitious, could significantly advance the field of 

medical imaging and beyond, leveraging the full potential of CNNs in complex segmentation tasks. 

 

 



8. A separate page on Individual Contributions 

HyunJun Park 

In our project, I believe that Rohan and I achieved a well-balanced distribution of tasks and 

responsibilities. As a team, we spent considerable time discussing the problem and brainstorming 

potential solutions. Regarding individual contributions, I felt that both of us did best for our 

responsibilities, and equality contributing to the project. Personally, I believe that I focused more on the 

dataset and data pre-processing, while Rohan mainly focused on model improvement and preparing the 

final project presentation. This division allowed us to leverage our individual strengths while maintaining 

a collaborative effort throughout the project. We worked together on improving the code, model 

parameter tuning, and finalizing both the written and oral presentations, ensuring a balanced 

contribution from each of us. 

 

Rohan Gupta 

I believe HyunJun and I contributed an equal amount of work towards this project. We spent 

time together to understand this problem and look for potential solutions on both the Kaggle site and 

through outside resources. Upon deciding on our model, HyunJun was primarily responsible for 

processing and augmenting the dataset and formulating the structure of the notebook and the libraries 

we used. Most of the parts I worked on consisted of designing and tuning the Model and the 

corresponding training, loss, and evaluator functions. I was primarily looking at our evaluators and 

graphs and advising/implementing what step we should take next. We both spent an equal amount of 

time writing the project proposal, presentation slides, and the final report.​
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