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1. Introduction and Problem Statement

In the realm of medical imaging and analysis, the precise segmentation of blood vessels in 3D
images of human organs has been spotlighted in recent years and has become an area of active research.
Unfortunately, the current way of labeling vascular segmentation is a time-consuming and
labor-intensive process, as it requires manual labeling. This manual process not only slows down
research but also suffers from a lack of generalizability and consistency across different datasets.

Our project, SenNet + HOA - Hacking the Human Vasculature in 3D?, aims to address this
challenge by developing a model that can accurately and efficiently predict vascular structures from
advanced Hierarchical Phase-Contrast Tomography (HiP-CT) 3D scan images. To address this, our project
utilizes a Convolutional Neural Network (CNN) with an Attention U-Net architecture, known for its
efficacy in medical image segmentation tasks. The Attention U-Net model is designed to work by
providing precise localizations of the segmented areas. The model's performance is evaluated using the
Surface Dice Metric, a metric specifically chosen for its ability to measure the similarity between the
predicted and actual segmentation masks. By automating the segmentation process while maintaining
high accuracy, our project aims to significantly contribute to the field of medical imaging, aiding in a
better understanding of vascular structures and potentially impacting diagnostic and therapeutic
procedures.

2. Related Work

The field of medical image segmentation has seen various approaches, mostly using
Convolutional Neural Networks (CNNs) due to their effectiveness in handling image data. Historically,
approaches like Convolutional Neural Networks (CNNs) have been utilized for image segmentation tasks.
One example of this was a Mask Regional Convolutional Neural Network (MaskRCNN) used to segment
human kidneys and delineate the kidney into 12 classes, whose results were published in a study in
2021. Results of the study suggested that there is potential for the model to perform, however, it was
too challenging to identify specific parts of the kidney because of the low signal-to-noise ratio in the
images. Their model consisted of using 3 sequential CNNs, one to get an aligned set of Region of Interest
(Rol), one to classify the boundary box from each Rol, and the last to identify the Rol’s class and mask.
However, for the specific challenge of blood vessel segmentation, the U-Net architecture, a different
type of CNN, could be more effective.
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Another significant approach is the U-Net architecture, which is known as effective for medical
image segmentation tasks.? U-Net's architecture, designed specifically for biomedical image
segmentation, offers an advantage in detailed and nuanced tasks like blood vessel segmentation. Our
project builds upon these foundational works, focusing on the U-Net model for its superior performance
in segmenting complicated structures within 3D medical images. In our project, we decided to develop
an improved version of U-Net architecture by adding an attention block to the skip connection, focusing
on only important parts and discarding unrelated features of the image.

3. Data Sets

Our project uses a dataset provided by the Kaggle competition. The provided dataset is a
collection of high-resolution HiP-CT 3D images of human kidneys and corresponding blood vessel
segmentation masks. The dataset is available here

(https://www.kaggle.com/competitions/blood-vessel-segmentation/data).

Dataset Composition and Structure:

The dataset is structured into two primary sets: the training and test sets. It contains
approximately five kidneys, represented through a series of 2D images. Each image is a top-down TIFF
scan, representing a 2D slice of the 3D kidney volume.

e train/{dataset}/images - Contains top-down TIFF scans from several kidney datasets, each
representing a 2D slice of a 3D volume.

e train/{dataset}/labels - Contains blood vessel segmentation masks in TIFF format. The folder
contains kidney_1_dense, kidney_1_voi, kidney_2, kidney_3_dense, and kidney_3_sparse
subsets, each varying in resolution and segmentation detail.

e test/{dataset}/images - Contains the TIFF scans for the test set. These scans may or may not use
a different beamline or resolution from the scans used in the training set.

Dataset Size and Accessibility:

e The dataset is quite large, with a total size of 43.52 GB and a total of 14.4K files.
e |tis licensed under Attribution 4.0 International (CC BY 4.0).

Image Data Preprocessing and Transformation:
We applied the following transforms to the original images for more accurate train results:

e Resizing: Resize the original image to the fixed size of 256x256 pixels sizes. This standardization
is essential for ensuring consistent input dimensions for the neural network model.

e Flipping: A random horizontal flip and vertical flip are applied to increase the diversity of the
training data and help the model learn invariant features.

e Shift, Scale, Rotate: Randomly shifts, scales, and rotates the image to increase the diversity of
the training data and help the model learn invariant features.

e Random Cropping: Ensures that the model focuses on different regions of the image, enhancing
its ability to detect features irrespective of their location.
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e Brightness Variation: Randomly adjusts the brightness of the image, allowing the model to

handle images with varying lighting conditions.
e Blurring: Introduces blur to image. This also introduced diversity of the training data.

Example of original and processed HiP-CT scan images and blood vessel segmentation masks:
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4. Description of Technical Approach

Model: Attention U-Net Architecture

The general structure of our Attention U-Net is to use several encoder layers (downsampling) to
gather features from the original dataset, and then use symmetrical decoder layers (upsampling) to
determine the segment mask. When upsampling, corresponding encoder outputs will be concatenated
before being processed, making segmentation more accurate.
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(Image from https://qeeksforgeeks.org/u-net-architecture-explained/)
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The intuition behind this model is that the decoder layers have more semantic information, such as the
area that circles around the object, while the encoder layers likely have more spatial information, such as
the specific pixels corresponding to the object.

To improve our model further, we decided to integrate the original U-Net architecture with
attention blocks, which allows our model to focus on certain parts of the input data. The attention
mechanism is applied to the present and corresponding convolution layer, allowing our model to
selectively focus on relevant regions of the input image. This enhances the model's ability to identify and
segment target structures with complex backgrounds. Each down convolution layer is performed using 2
convolution blocks, where each block consists of a Conv2d, BatchNorm2d, and RelLU activation function.
In between each down convolution layer, we perform one max pool. Each up convolution layer consists
of one Upsample, Conv2d, BatchNorm2d, and a RelLU activation function. After one up convolution, we
acquire the attention block from the current up convolution and the corresponding down convolution.
Each attention block consists of putting the two inputs in a convolution block, concatenating the results,
and putting them through another convolution block. This result is then concatenated with the current
up convolution and then finally passed to a convolution block, which ends one of our up convolution
layers. In our final model, we have 6 down convolution layers and 6 up convolution layers. Consequently,
there are 5 attention blocks. Each layer alters the number of channels by a factor of 2, starting with
convoluting the initial 3 channel 256 by 256 pixel image to 32 channels.
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(Image from “Attention U-Net: Learning Where to Look for the Pancreas,” https://arxiv.ora/pdf/1804.03999.pdf)

Loss Function: Focal Loss

We picked Focal Loss as our primary loss function instead of using the generic Cross Entropy
Loss. This choice was driven by the need to address the class imbalance prevalent in our dataset, where
most pixels do not represent blood vessels. It focuses on hard-to-classify examples, giving more weight
to incorrectly classified instances. The implementation of Focal Loss in our project is a modified version
of binary cross-entropy, providing a balanced approach to handling class imbalance.

Evaluator: Surface Dice Coefficient

The evaluator we used was the surface dice coefficient, which is a variation of the dice
coefficient. In the context of segmentation mask similarity, the dice coefficient is modified to take the
agreement between the surfaces of two segmented regions instead of their entire volumes. We were
given a function implementation of calculating the dice coefficient within the Kaggle Competition, but


https://arxiv.org/pdf/1804.03999.pdf

the derivation is quite simple. It is 2 times the intersection between the predicted and actual mask
divided by their union.

5. Software

We used PyTorch, a machine learning framework, to implement our Attention U-Net. We
referenced an Attention U-Net: Learning Where to Look for the Pancreas® research and Attention-Gated
U-Net notebook® posted on the Kaggle site by Aniket Patil for creating scripts necessary for data
processing, displaying data, and learning conventional ways to set up our layers and forward methods.
We started with defining our custom PyTorch Dataset, which makes it easier to access unorganized
original HiP-CT images and segmentation masks. This dataset is also designed to apply image transform
on load. We then used Pytorch DatalLoader to convert data files into tensors, which we referenced from
Homework 3 from this class. We used OpenCV and Numpy to read, resize, and normalize each data
image. Following this, we used the package albumentations to augment our images, which consisted of
resizing, flipping, rotating, cropping, varying brightness, and blur to create 250x250 grayscale training
images. Because neither of us had experience in conventional techniques used for augmenting images,
we verified and used the general structure of the augmentation done in the referenced in the
Attention-Gated U-Net notebook posted on the Kaggle site. The entire data preprocessing and
augmentation was referenced by the model mentioned above. We displayed the images using
matplotlib, which we have used in many classes throughout UCI. Our PyTorch attention model had 3
submodels: one for Down Convolution, Up Convolution, and the Attention Gate. We learned of this
structure from the reference model mentioned previously. Most convolution blocks consisted of several
Conv2ds, BatchNorm2ds, and ReLU. This general structure was adapted from our homework 3
assignments. For the evaluator, we used the Surface Dice Coefficient, which is often used in medical

image analysis to quantify the similarity between two surfaces and is particularly useful for assessing the
accuracy of segmentation in 3D images. The function to generate the dice coefficient was provided to us
in the Kaggle description. We used a variant of Cross Entropy Loss called Focal Loss, which adds a factor
to focus training on the hard negatives, which was also referenced from Aniket Patil’s posted notebook.
For the optimizer, we used the Adam optimizer provided by the PyTorch library with a learning rate of
0.0001. After training, we stored our training/validation results using pandas and our trained model
using PyTorch for later use. We displayed our results using matplotlib conventions, and we were
provided with a function by the Kaggle competition to generate the run length encoding of our validation
kidney results, which was necessary for our submission.

6. Experiments and Evaluation

The foundation of our experimentation lies in a dataset comprising three kidneys (5 folders) for
training and two for testing. However, a unique challenge arises with the test kidneys as they lack
associated labels or segmentation masks. To overcome this limitation, we chose a cross-validation
approach to assess our model's progress. The training dataset was partitioned into 70% for training and
30% for testing. In our initial model iteration, we opted for a U-Net architecture with only two layers to
establish a baseline. The model's layers encompassed convolution blocks transforming images from 1
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channel to 64 and finally back to 1 channel. As anticipated, this rudimentary model exhibited the poorest
accuracy, with a surface dice coefficient hovering around 0.15. With a modest training duration of 15
epochs, both train and validation accuracies indicated the potential for convergence with additional
epochs. To further the model's complexity, we expanded the number of layers to five and extended the
training duration to 20 epochs. Accompanying this, we chose to reduce channel dimensions by a factor
of 2. The image, which initially starts with 1 channel, underwent up-convolution five times to reach 1024
channels and subsequently underwent five down-convolutions with attention to attain 1 channel.
Despite this model's significant advancement, achieving a surface dice coefficient of about 0.41, a
challenge surfaced during hyperparameter tuning. The prediction mask consistently resembled the
processed mask, creating ambiguity in discerning overfitting or underfitting. The similarity between
validation and training dice coefficients compounded this because neither showed us signs of what
direction to move next. This dilemma prompted a critical evaluation of our five-layer model's
capabilities, leading us to believe that we might have reached close to the maximum efficiency for this
model, limiting its potential as a more accurate classifier.
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Prediction mask with 5 layer U-Net: 0.003% error rate, but only a 0.41 surface dice coefficient

Despite taking approximately three hours to train, the results indicated room for more
complexity. In response, we developed our final model, incorporating six layers, thereby increasing both
complexity and training time to over four hours. In crafting this conclusive model, we stuck with a
maximum channel size of 1024, but introduced a novel approach in the initial convolution by reducing it
to 32 channels instead of 64. A subsequent last up-convolution layer transformed the image from 32to 1
channel, while the preceding layer adapted to convolute the image from 64 to 32 channels. This strategic
alteration aimed to introduce an additional attention layer, hopefully having a strong impact between
the initial convolution and the final result of our U-Net. The intention behind this adjustment was rooted
in avoiding potential overfitting associated with increasing channels from 1024 to 2048, a consideration
that led us to opt for a smaller layer. The model already almost had a 0% error rate, but a coefficient of
0.41 steered us away from increasing the number of channels. The results from this model surpassed
expectations, boasting a train and validation dice coefficient of 0.66. Intriguingly, when we displayed the



surface dice coefficient against epochs, it became evident that more convergence was possible even
after 20 epochs. Subsequently, we extended the training duration to 25 epochs, requiring five hours, and
observed the validation dice coefficients almost reach 0.7. The careful consideration of hyperparameters,
layer complexities, and training durations collectively contributed to the evolution of our model,
culminating in a robust and fairly accurate segmentation tool for kidney images.
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7. Discussion and Conclusion

Unlike our initial expectations, the model achieved a dice coefficient of around 0.7 and minimal
training and validation loss, close to 0. This was a surprising outcome, especially considering the
complexity and size of the dataset we worked with. It highlighted the effectiveness of the Attention
U-Net in terms of handling complex imaging tasks such as medical image segmentation. We touched on
the U-Net architecture slightly in class, but we had never heard of the Attention U-Net architecture
before this project. It made the concatenation of the corresponding layers much more complex and was
likely a huge factor in our decent results. We were definitely surprised by the results of our model. This
was the first time either of us trained a CNN model on such a huge and complicated dataset, and after
transitioning from homework 3, we didn’t expect the accuracy to be anywhere close to 0%, even if that
wasn’t our primary evaluator. However, the project also exposed the limitations inherent in current CNN
models, particularly in terms of computational resources and time. One severe bottleneck of this
problem was the time it took to train the model when it was clear we had to increase the number of
layers and the number of epochs. Our final model, which took 5 hours to run, definitely showed
indications of having better results if we were to increase the number of layers and epochs. If we had
more time to do so, we think this model would reach a dice coefficient close to one. Looking forward, If
we were in charge of a research lab, we would focus on exploring ways to optimize the efficiency of our
model. Investigating methods to reduce training time without compromising accuracy would be a key
area of interest. Additionally, we would dive into the feature retrieval in each individual layer to
understand how each layer affects our final mask. To do this, we would need to learn how to understand
and translate the channel's weights into a representation of the features it can find. Doing so would
allow us to tune individual layers and likely find evidence toward increasing or decreasing the number of
layers or convolutions. These approaches, while ambitious, could significantly advance the field of
medical imaging and beyond, leveraging the full potential of CNNs in complex segmentation tasks.



8. A separate page on Individual Contributions
HyunJun Park

In our project, | believe that Rohan and | achieved a well-balanced distribution of tasks and
responsibilities. As a team, we spent considerable time discussing the problem and brainstorming
potential solutions. Regarding individual contributions, | felt that both of us did best for our
responsibilities, and equality contributing to the project. Personally, | believe that | focused more on the
dataset and data pre-processing, while Rohan mainly focused on model improvement and preparing the
final project presentation. This division allowed us to leverage our individual strengths while maintaining
a collaborative effort throughout the project. We worked together on improving the code, model
parameter tuning, and finalizing both the written and oral presentations, ensuring a balanced
contribution from each of us.

Rohan Gupta

| believe HyunJun and | contributed an equal amount of work towards this project. We spent
time together to understand this problem and look for potential solutions on both the Kaggle site and
through outside resources. Upon deciding on our model, HyunJun was primarily responsible for
processing and augmenting the dataset and formulating the structure of the notebook and the libraries
we used. Most of the parts | worked on consisted of designing and tuning the Model and the
corresponding training, loss, and evaluator functions. | was primarily looking at our evaluators and
graphs and advising/implementing what step we should take next. We both spent an equal amount of
time writing the project proposal, presentation slides, and the final report.
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