

# Integrantes:

Carlos: <u>carmaval@espol.edu.ec</u> Yandri: <u>yuchuari@espol.edu.ec</u>

Arom Moreno: <u>arommore@espol.edu.ec</u>
Alex: <u>alexandergmzx@outlook.com</u>
Maria: <u>mfarias2701@gmail.com</u>

Carlos Rendon: crendon@espol.edu.ec

Guillermo:

carlos Ramírez: <a href="mailto:caanrami@espol.edu.ec">caanrami@espol.edu.ec</a>

#### **Mentores:**

Olme Garcia

Jorge Horacio Alessandri <u>ihaosb@gmail.com</u> +552199183-4125, +549113240-2110

David Rivas drrivas@ieee.org +593998542172

# 1. INTRODUCCIÓN

A nivel mundial, se han confirmado más de 163.000 muertes a causa de COVID-19. En América Latina la enfermedad se está esparciendo de manera acelerada, con alrededor de 80.700 casos confirmados hasta el momento.

En países como Ecuador, Perú, México y otros, se vive a diario problemas en cuanto a la escasa capacidad de atención médica en los centros hospitalarios, acompañado de una insuficiencia de recursos vitales como materiales de protección, equipos médicos, camillas, etc. Los centros de salud se encuentran saturados por la masiva cantidad de gente infectada y personas que requieren atención médica por otras causas, lo que dificulta el manejo de la logística y canalización de recursos por parte de las entidades de salud para brindar una atención inmediata.

Alrededor del 80% de las personas que contraen la enfermedad, presentan sintomatología muy leve y se recuperan sin incidentes en casa. Sin embargo, existen casos en los que su situación se agrava y al no ser atendidos oportunamente, fallecen. Especialmente en zonas donde la telemedicina se lleva a cabo rudimentariamente y el personal médico se encuentra copado.

Atendiendo a esta problemática que afecta enormemente a la comunidad más vulnerable, se decidió buscar una solución apoyándose en la telesalud moderna que se encuentra acoplada a tecnologías existentes que involucran disciplinas recientes como electrónica, mecatrónica, informática, biomédica y biomedicina.

#### 2. PROPUESTA

Se propone diseñar un kit médico inteligente, que implemente un botiquín y diversos dispositivos de medición médica (oxímetro saturómetro, termómetro, tensiómetro, etc), acompañado de una aplicación móvil que se encargará de registrar las mediciones de forma automática o manual para enviarlas a una base de datos y llevar un monitoreo en tiempo real de las personas que presenten



síntomas de COVID-19. Se pretende dar apoyo a la biotelemetría y telemedicina, haciendo énfasis especialmente en el saturómetro y en la personalización del kit, considerando las necesidades de cada usuario.

Con este sistema, bautizado con el nombre de Saving Lifes, se permitirá realizar un seguimiento periódico de la sintomatología del paciente, ayudando a establecer alertas de emergencia para una atención oportuna y patrones que determinen cuando la persona afectada se podría considerar libre del virus al presentar mejoras en su salud.

## 3. CARACTERÍSTICAS

# CARACTERÍSTICAS PRINCIPALES:

- El sistema permitirá enviar mediciones médicas de forma automática, además contará con una aplicación móvil para que otros usuarios que tienen sus propios dispositivos de medición puedan registrar los datos de manera manual, así el paciente puede ser monitorizado en tiempo real desde su hogar y recibir atención médica mediante una telemedicina efectiva.
- Permite obtener información sobre la concentración de oxígeno en la sangre y monitorear a los afectados, ayudando a detectar alteraciones en los pulmones de manera más rápida y económica que una radiografía.
- Es una innovación al dar un nuevo enfoque y actualización a los kits médicos actuales que se han usado durante mucho tiempo, apoyándose de tecnología moderna y existente.
- Contará con un compartimiento para un botiquín, donde se almacenarán medicamentos a requerimiento de cada usuario o los usados para combatir al covid-19.
- Los dispositivos de medición principales serán el saturómetro y termómetro, estos pueden ser inalámbricos sincronizados con el kit vía bluetooth o pueden estar conectados por medio de cables estirables para reducir costos. Además, el sistema es completamente expandible para incorporar nuevas funcionalidades o dispositivos de medición de acuerdo a las necesidades de cada usuario, puede tratarse de un kit muy básico hasta uno bastante avanzado que dé soporte a la robótica médica.
- Gracias a la aplicación móvil, el celular puede ser usado como dispositivo de apoyo de visualización de datos y comunicación con el médico por videollamada para consultorías, dará soporte de múltiples perfiles para un mismo usuario, teniendo en cuenta la seguridad de los datos. Los datos de las lecturas no salen del teléfono (o el kit) (a menos que el usuario habilite sincronización con la nube).



# CARACTERÍSTICAS SECUNDARIAS:

- Tener un monitor táctil para recibir asistencia médica virtual.
- Contar con una batería recargable de larga duración para que el kit sea portátil.
- Tener otros instrumentos necesarios de medición médica como estetoscopio digital, tensiometro, medidor de azúcar en la sangre, oftalmoscopio o electrocardiograma.
- Puede ser escalable a todas las regiones con cambios menores teniendo una gran viabilidad y escalabilidad.
- Contaría con luces ultravioletas para desinfectar la instrumentación médica y eliminar virus y bacterias.
- El acabado superficial de la instrumentación y zonas donde se requiera manipulación manual, tendrá material filtrante poroso de fibra suave sintética para evitar la contaminación microbiana y viral.
- Ayuda de soporte vital para la robótica médica.
- Compatibilidad con tecnología actuales y en desarrollo (smartwatch, drones, robot spot, robot da vinci, etc).

## 4. VENTAJAS

Disminución de tiempos de atención, diagnóstico y tratamientos más oportunos por la posibilidad de ofrecer ayuda especializada en lugares de difícil acceso.

Mejora en la calidad de servicio al realizar las consultas con personas completamente capacitadas, y la posibilidad de contar con más de una opinión con respecto a un problemática médica.

Reducción del problema de insuficiencia de especialistas con la creación de amplias redes de telemedicina. No será necesario el traslado físico de un especialista a determinada área, podrá atender la necesidad desde su propio lugar de trabajo y posteriormente estar disponible ante cualquier otro posible caso.

Reducción de los costos de transporte al no tener que salir hasta lugares tanto cercanos como remotos, los costos de viaje serán ampliamente reducidos, lo que puede ser invertido en adquisición de otro tipo de materiales o el correcto mantenimiento de las redes.

Atención continua, siempre existirá alguien dispuesto a enfrentar un problema. Una red telemédica, es una red de atención de 24 horas.



Tratamientos y seguimiento de los mismos ante cualquier eventualidad, de una forma apropiada al poseer asesoramiento por personas completamente capacitadas.

Mayor cobertura (igualdad de servicios de salud, sin importar la localización geográfica): en una gran red de Telemedicina pueden estar interconectados diferentes establecimientos médicos, esto es que será posible interconectar hospitales rurales con centros especializados en áreas urbanas.

Centralización de recursos (bases de datos-historias clínicas). En una red de telemedicina existe una gran red de datos de la cual se puede tener acceso a cualquier tipo de información, con el fin de ser interconectada con una o más redes para estudiar un comportamiento en específico. Por ejemplo, la relación entre el éxito de un tratamiento con el estilo de vida de un paciente o sus antecedentes clínicos.

#### 5. LOGROS REALIZADOS

Aplicación de técnicas de Design Thinking para prototipado de alta resolución.

Diseño de un botiquín médico con instrumentos de primera necesidad ante la actual pandemia.

Registro y monitoreo permanente de datos del paciente para llevar un control del avance ante un posible caso de COVID-19.

#### 6. RETOS FUTUROS

Ampliar el alcance de análisis de la aplicación, para que analizar los cambios en la voz(frecuencia de los Armónicos) producidos al habla, mediante el uso de Al se determina un posible caso de COVID-19.

Diseño y construcción de una pulsera de bajo costo, que pueda tomar mediciones de temperatura y ritmo cardiaco de un paciente en tiempo real, y a su vez envíe esta información a un servidor en la que sea analizada.

Entrenar una IA con sintomatologías previas y el comportamiento del virus en pacientes para dar alarmas a las autoridades de manera más temprana.

Obtener ayuda de las autoridades para poder distribuir este sistema a las personas más vulnerables, un solo sistema por hogar puede abarcar o dar el seguimiento a toda una familia.

Generar nuevos modelos de negocios con suscripciones para los usuarios y nuevas ramas de la medicina enfocada en la telemedicina, redes inalámbricas, comunicación efectiva y habilidades empáticas.



### 7. HERRAMIENTAS/MÉTODOS USADOS

Para haber llegado a la solución propuesta se realizó varios procedimientos que involucran desde la investigación científica hasta proceso de innovación y design thinking.

- I. Se usó como primera instancia la observación, para entender la necesidad de los usuarios y los problemas ocasionados por la pandemia.
- II. luego de haber entendido la problemática se procedió con una lluvia de ideas de las cuales surgieron pensamientos muy innovadoras, se usaron herramientas como Microsoft Teams, hangout y documentos de google drive. (ver anexos)
- III. Se analizó cada idea con la ayuda de los criterios que iban a ser evaluados para generar una gráfica de Dificultad vs Impacto, se usó la herramienta de software libre inkscape. (ver anexos)
- IV. Se seleccionó la idea que más impacto generaría a la sociedad durante esta crisis bajo los criterios de innovación y valor social agregado, fue discutida para definirla con las características que contará el sistema analizando desde diferentes perspectivas, para esto se usó la herramientas del lean canvas, entrevistas y encuestas con google form. (ver anexos)
- V. Cada uno de los miembros realizo un boceto con las características físicas más innovadoras que tendría el kit para luego concretarse en un solo diseño que combina la funcionalidad con estética, para esto se usó herramientas básicas como el lápiz y papel, además de otras aplicaciones de ilustración(paint, power point, inkscape). (ver anexos)
- VI. Finalmente se diseñó la arquitectura del sistema usando herramientas como fusion 360 e inventor para el modelado 3D del kit médico y adobe para ilustrar de manera visual las pantallas de la aplicación móvil. (ver anexos)



# 8. ANEXOS

### lean canvas

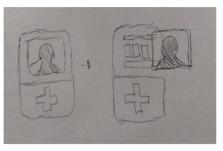
| edil Calivas                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem Capacidad limitada de atención médica en los centros hospitalarios Mantener saludable a la población, combatir el virus y ayudar a los afectados Escasos recursos vitales (materiales, logística, planificación) en un hospital Existen pocas herramientas de análisis y visualización de datos que | Solution  Compartir información de salud entre médico-paciente.  Monitorizar en tiempo real la salud del paciente  Permitir el análisis de datos de los pacientes. Generación de alertas Manual de usuario para uso y mantenimiento.                                                                                                   | Unique Value Proposition  Telemedicina en tiempo real que permita una atención oportuna en pacientes detectados con covid-19 y una correcta canalización de recursos | en el pago de ellos durante<br>d-19 emergencia sanitaria.                                                                                                                                                                                                                                                                                                                                                               | Customer<br>Segments  Afectados por el covid-19 Entidades de salud pública y<br>privada  Particulares afectados<br>Afiliados y no afiliados Las industrias farmaceuticas |
| contribuyan a la lucha contra la expansión de COVID19  Existing Alternative Medic kit gale Ir seguido al medico telemedicina                                                                                                                                                                                | Key Metrics  - Número de pacientes activos  - Número de ventas del kit  - Uso de la plataforma.  - Datos manuales ys datos del kit  Recurrencia de la biase de datos para la planificación en la distribución de recursos por parte de las entidades públicas y/o privadas  - Número de vidas salvadas (casos atendidos oportunamente) |                                                                                                                                                                      | Channels Redes sociales youtube Campañas publicitarias médicas Mailing Instituciones médicas de salud Amazon Tienda de aplicaciones móviles                                                                                                                                                                                                                                                                             |                                                                                                                                                                          |
| Cost Structure Dispositivos Capacitación de personal médico. Manufactura del Kit personalizable Servidores e infraestructura web                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      | a Streams Venta del producto o kit que se ajustara al usuario. Voonaciones a la iniciativa (Hay plataformas que ayudan con Trabajar directamente con gobiernos e instituciones de salur volumen) Ururante emergencias, se definiría una tarifa reducida donde costa de las ganancias, se conyresgría con cada cliente par poperatividad para su volumen pico, esto flexibilizaria el coste manteniendo la operatividad. | privadas. (Cobrarles una licencia de uso por<br>como plataforma garantizamos la operatividad a<br>a llegar a un acuerdo de mantenimiento de                              |

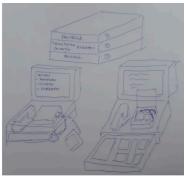


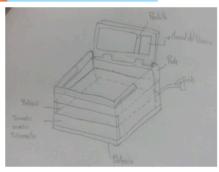
#### Luvia de ideas hackathon

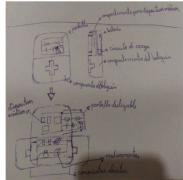
- 1. plataforma online para dar clases, parecido al programa aprendamos, donde se usen los 3 componentes televisión, tutorías y libros. Es posible modificar esta idea para adaptarla a plataformas actuales.
- 2. Plataforma online para que personas inmune puedan donar plasma.
  Tener una base de datos de personas que se han recuperado y que se ofrezcan para que quieran donar el plasma.
- **3**. diseñar un kit médico inteligente personalizable que implemente un botiquín y diversos dispositivos de medición médica (oxímetro saturómetro, termómetro, tensiómetro, etc), además de una aplicación móvil que se encargará de registrar las mediciones de forma automática
- **4**. Usar un reloj inteligente con sensores de oxímetro, termómetro, para hacer seguimiento a las personas infectadas.
- 11. Incorporar cámaras térmicas a las cámaras de seguridad para que alguien que tenga fiebre le caiga el ejército encima.
- **12**.-Web que permita llevar un registro de personas fallecidas y la disponibilidad de ataúdes por funerarias
- whatsad pero con tus vecinos, donde te conectas y puedes comunicarte con personas cercanas a ti.
- 9. learn it pagina para aprovechar la experiencia de una persona y darle otro enfoque laboral.

# Gráfica Dificultad vs Impacto

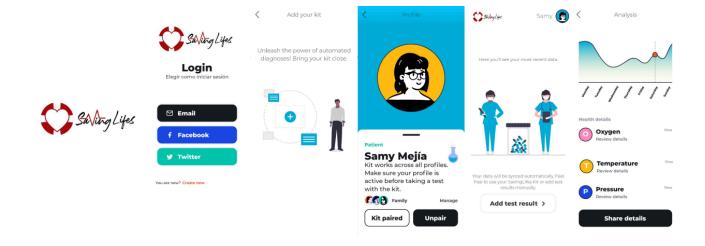

| Dificultad _ |                                  | 11. Cámaras térmicas                                                  |
|--------------|----------------------------------|-----------------------------------------------------------------------|
|              |                                  | 3. kit medico inteligente<br>2. app para gestionar donacion de plasma |
|              | 1. plataforma<br>para dar clases | 4. idea del reloj inteligente                                         |
|              |                                  |                                                                       |


Impacto

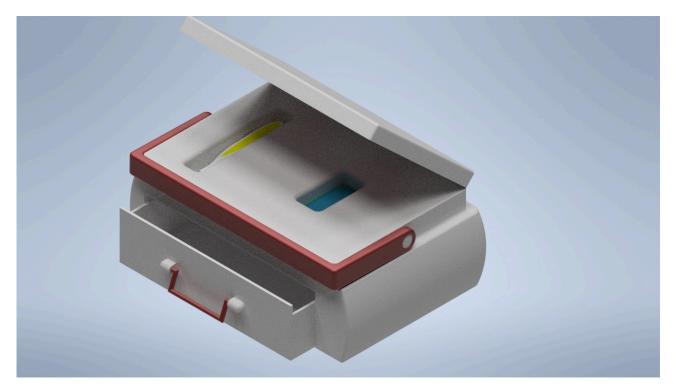


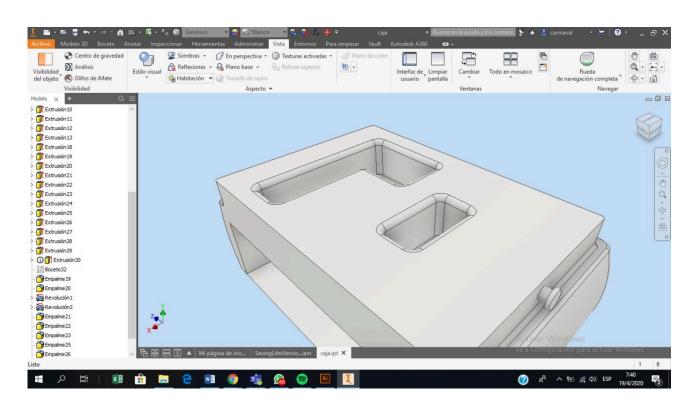




# **BOCETOS**

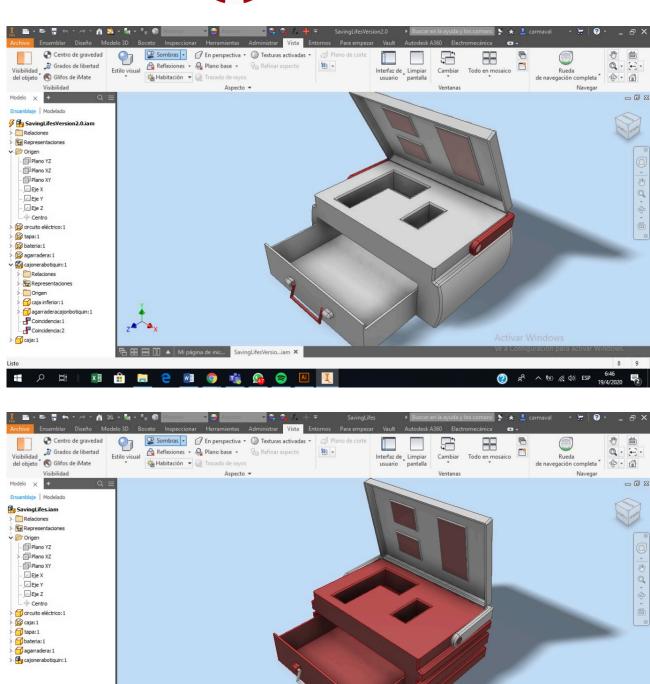





# Diseños







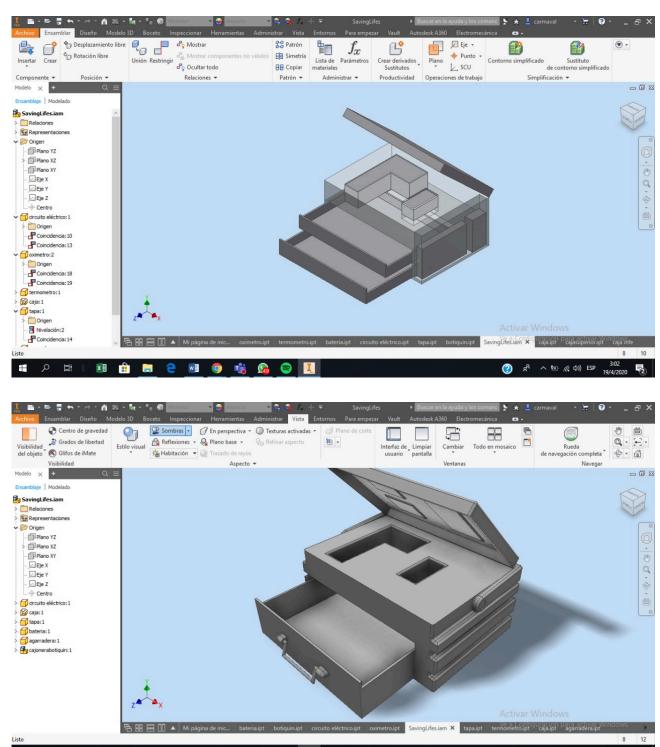







🖺 🔛 📗 🔺 agarradera.ipt agarraderacajon...ipt bateria.ipt caja inferior.ipt

e 🔟 🧿 🎼


■ 2 貰

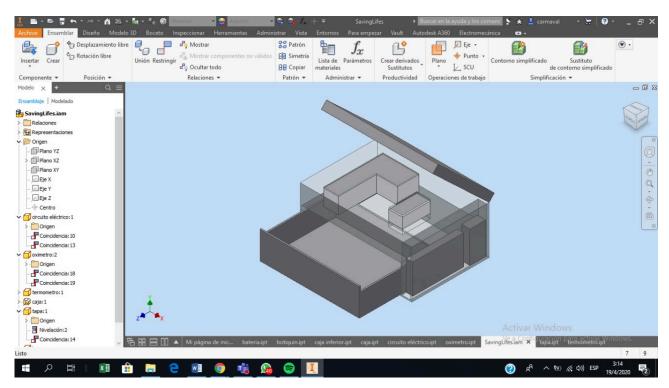
x 🎚

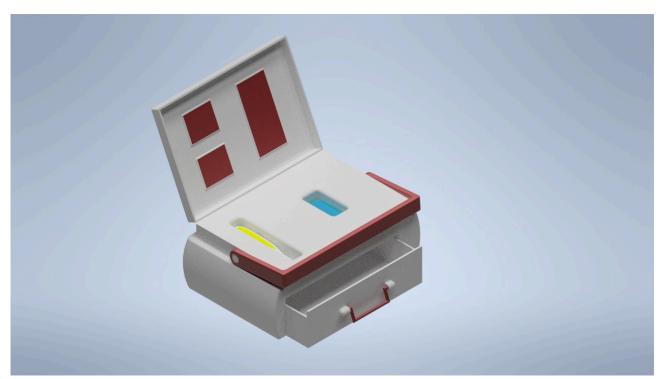
caja.ipt cajonerabotiquin.iam circuito eléctrico.ipt savingLifes.iam X

② x<sup>R</sup> ∧ № //. (1)) ESP 5:52 19/4/2020 2

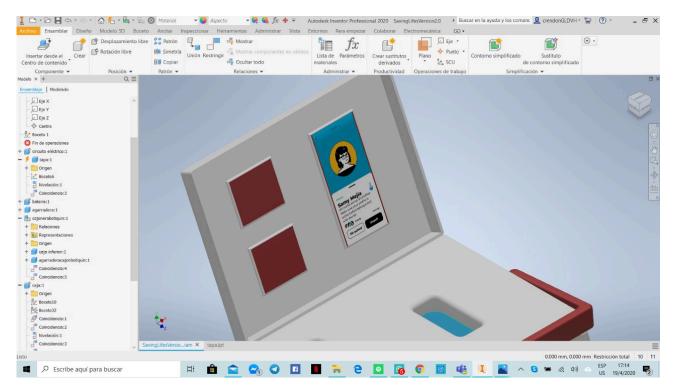





② x<sup>Q</sup> ∧ <sup>q</sup>⊠ //<sub>e</sub> (1)) ESP 5:34 19/4/2020 2


■ 2 貰

x 🎚


e 🗐 🧿 📬









