
Generic Out of Band File Format 
Configuration for Node 
 
Guy Bedford did all the leg work on these and has an open PR. He deserves all the credit. Send 
him lots of nice things : https://twitter.com/guybedford 
 
The following lays out the first stage of an incremental plan to give Node a generic solution to 
the problem of file formats. This first stage only seeks to: 
 

1.​ Setup well known presets for file format models, with the ability to add more complex 
models later 

2.​ Integrate with ESM Loaders 
3.​ Be able to be easily taught and reasoned about 
4.​ Work in common cases but document edge case compromises 

a.​ The edge case compromises in this document all have alternative workflows 
should they be unacceptable. 

5.​ Be declarative in nature to allow maximal compatibility with a variety of use cases 
 
Further stages should be able to safely rely on these features as a more formal spec outside of 
this document is produced. 
 

 

package.json#mode 

Identified Problems 
●​ ESM requires out of band information in order to reliably determine the format of a file 
●​ Developers are seeking to use .js for the ESM format when possible 

Considerations 
●​ Method of consuming a file determining format means that files can exist in multiple 

modes at the same time, which has been considered problematic. 
●​ For new applications, a common scenario is to write only ESM and not support CJS 
●​ Categorical similarities to "format" in the ESM loader hooks would seek to use the same 

shortened forms when it makes sense. 

https://github.com/nodejs/node/pull/18392
https://twitter.com/guybedford
https://nodejs.org/dist/latest-v9.x/docs/api/esm.html#esm_resolve_hook


Usage 
Add a "mode" field to your package.json with one of two well known values for now. These will 
change the behavior of various file extensions within a package. 
 

"mode" affect 

esm .js files are treated as ESM 

commonjs .js files are treated as CJS 

 
Note: when a file is treated as ESM, files cannot be require()'d since require does not work on 
ESM. 

Reasoning 
●​ .mjs can be used as an escape hatch for mixed format applications; designs regarding 

mixed formats can defer to the "commonjs" mode and .mjs. 
●​ package.json is a well known boundary and does not impede JS spec like reject "use 

module" pragma. Developers can nest directories and package.json files to change the 
mode they are operating in. The mode is limited to package boundaries and setting the 
mode in one package boundary will not affect another. Package boundaries are defined 
as any directory containing a package.json file. 

●​ mode is setup as a string with the intent to be scalable over time, it builds upon the idea 
of having presets as described in other designs, It takes an incremental approach of only 
introducing the well known presets first. It is capable of scaling to more complex designs 
as needed. 

 

--mode 

Identified Problems 
●​ Not all situations have a package.json file 
●​ require() treats any file without an extension as CJS 

Considerations 
●​ Categorical similarities to "format"/"mode" would seek to use the same shortened forms 

when it makes sense. 

https://gist.github.com/bmeck/7ee7eb2147e2dafe3167c856d9b4151a


Usage 
Add a --mode switch to your command line invocation. 
 

--mode affect 

esm Loads the CWD as a package boundary with 
the specified "mode" of "esm" 

commonjs Loads the CWD as a package boundary with 
the specified "mode" of "commonjs" 

 
Note: when a file is treated as ESM, files cannot be require()'d since require does not work on 
ESM. 

Reasoning 
●​ Packages with a package.json can set the "mode" field 
●​ Even if files do not have a package.json there may be multiple of them, this flag allows 

the default behavior to be set. Being unable to consume non-package CJS while this flag 
is set to "esm" seems a reasonable edge case. In such a situation a directory structure 
could be made, or using .mjs and .js without the flag works.aa 

 



Punted 
The following was punted to be a later addition if WASM/Webpackage/etc. prove to need it. The 
design laid out below should integrate directly against the designs above. 

 

--format 

Identified Problems 
●​ bin files often do not have an extension 
●​ When piping a file to Node over STDIN, there is no way to declare the format of the input 

Considerations 
●​ This remains separated from "mode" since it does not identify with any form of file 

extension. 
●​ Matches the loader hook value for "format" 
●​ package.json "bin" path values can contain extensions even if the name does not 
●​ Categorical similarities to "mode" would seek to use the same shortened forms when it 

makes sense. 

Usage 
Add a --format switch to your command line invocation. 
 

--format affect 

esm The entry is treated as ESM 

commonjs The entry is treated as CJS 

 
Note: when a file is treated as ESM, files cannot be require()'d since require does not work on 
ESM. 

https://nodejs.org/dist/latest-v9.x/docs/api/esm.html#esm_resolve_hook
https://docs.npmjs.com/files/package.json#bin


Reasoning 
●​ While setup to scale, the main historical intent of Node is to consume .js files. The use of 

shorthands reflect this and allows an implementation to land without discussing the exact 
format of any future values intended for scaling the design space. 

●​ Shorthands of "esm" and "common" can be reasoned about to expand to larger more 
complex values such as a MIME as scaling occurs. These values in particular do not 
contain any special characters and can be considered a reserved namespace of sorts. 


	Generic Out of Band File Format Configuration for Node 
	package.json#mode 
	Identified Problems 
	Considerations 
	Usage 
	Reasoning 

	--mode 
	Identified Problems 
	Considerations 
	Usage 
	Reasoning 

	 
	Punted 
	 
	--format 
	Identified Problems 
	Considerations 
	Usage 
	Reasoning 


