
CPE 419/466 - Fall 2015 - Combined Project

Parallel PageRank

Due date: Sunday, November 15, midnight.

Overview
In this assignment you will work with CSC 419 students to implement two versions of the parallel PageRank
ranking algorithm; one to be run on an NVIDIA GPU, and the other to be run on an Intel Xeon Phi. You will test
on a number of datasets.

Assignment Preparation
This is a team programming assignment. The instructors will construct teams with at least one person from
each course (419/466). The intent is not for 419 students to just inherit and parallelize the 466 students' code.
Much more learning happens if the 419 students come out of the project understanding PageRank, and the
466 students know how to parallelize code. It is expected that you will help to teach your team members the
material from the class you are in, and to learn from the team members of the other class. Every team member
is expected to participate in the design, implementation, testing and optimization of the program(s)! Each team
submits only one copy of the assignment deliverables.

Teams

Please note: because the classes run on different days, we are unable to schedule mandated joint labs.
It is the responsibility of each team to contact their partners from the other class and to set up the
implementation schedule.

Data
There are several datasets available for this assignment. They are broken into two categories: the small
datasets and the SNAP: Stanford Large Network Dataset Collection, https://snap.stanford.edu/data/

Small Datasets

Your implementation shall run in adequate time on any of the datasets from the ”small datasets” list provided
below. The results of running your implementation of PageRank on these datasets must be put in your report.

1.​ STATES. This dataset contains information about the 48 mainland U.S. states plus the District of
Columbia and the borders that these states share. (Alaska and Hawaii are excluded from the dataset
since they do not share borders with other states).

2.​ NCAA-FOOTBALL. This dataset contains information about ev- ery single game played by Division I
teams in the 2009 NCAA regular football season (before bowls and championships started). A total of
1537 games was played, their results are documented in the dataset.

3.​ KARATE. This dataset describes a small social network consisting of members of a university karate

https://docs.google.com/spreadsheets/d/1w3ldU0h5Z2NONqVhMeZup50UqJ44kd92-jUa61aJ6AY/pubhtml
https://snap.stanford.edu/data/

club.
4.​ DOLPHINS. A social network of a group of dolphins as observed by researchers over a period of time.
5.​ LES-MISERABLES. A graph of co-occurrence of different characters in the chapters of Victor Hugo’s

novel Les Miserables.
6.​ POLITICAL-BLOGS. A graph of political blogs connected by their citations of each other on the eve of

the 2004 Presidential election in the US.

Assignment
You have already implemented a program that takes as input a data file, runs the PageRank analysis on the
graph extracted from the input file, and outputs the individual items (football teams, states, etc...) ranked in
descending order of their computed PageRank together with the PageRank score and the rank. The program
also contains timing functions that measure the following:

1.​ Read time. The time it takes to read in the data from the input file and build the initial graph data
structure.

2.​ Processing time. The time it takes for the PageRank process of compute the PageRank of each node in
the graph.

3.​ Number of iterations. The total number of iterations it takes for PageRank to converge (this is, unless
you are running PageRank on a preset number of iterations).

Your Lab 3 implementation of PageRank will be considered a golden standard when it comes down to the
accuracy. That is: your parallel implementation MUST return the same results as your Lab 3
implementation on each data set given the same input parameters. 1

Method

Some of the advice below concerns specific material covered in CSC 419. Please consult with your CSC 419
partners on it.

Refactoring/Recompilation
Refactor your implementation into C/C++ and recompile the PageRank implementation using both the NVIDIA
(nvcc) and Intel (icc) compilers. Use any reporting mechanisms the compilers offer to better understand how
the code is being optimized. Compare runtimes of the refactored and recompiled implementations and include
differences in your report.

Profiling
The first step you should take after recompiling is to profile your code using both NVIDIA’s and Intel’s profilers
(nvvp and vtune, respectively). Identify the hot spots in the existing implementation. Specifically, identify the top
three functions where the most CPU time is spent. Include these in your report.

1 Unless you discover an actual error in the code, in which case you will need to fix your Lab 4 implementation as well.

Memory Layout Optimization
Before parallelizing the code, make every attempt to exploit memory locality in your implementations (for both
architectures). Focus on the techniques we discussed in class: arrays vs. lists, row-major vs. column-major
ordering, Structures-of-Arrays versus Arrays-of-Structures, memory alignment, etc. Collect timing information
after optimizing memory layout and compare with the version of the code you started with. Include this in your
report.

Xeon Phi Implementation
For the Xeon Phi, you may implement either an offload model, or a native MIC executable, your
choice. For either option, you will need to determine whether the entire input dataset will fit in the
device’s memory. Also for either option, plan to utilize threading via OpenMP, and vectorization using
pragmas.

GPU Implementation

For the GPU, you may implement your solution using either CUDA or OpenACC, your choice. For
either option, plan to implement the optimization strategies we discussed in class: tiling, shared
memory, minimize branch diversion, etc.

Memory Movement Optimization

As you’ve seen, for the accelerators to provide maximum performance, data transfer between the
device and host needs to be minimized. Make every effort to put the data you need on the device
early, and reuse it as much as possible without a transfer back to the host.

Performance Requirement

At the very least, your parallel implementations must have better performance than the original
version of the code you start out with. The goal is to significantly improve performance. It is not
unreasonable to expect an order of magnitude performance gain using the methodology described
above.

Report
The assignment will be graded primarily based on the contents of your report. Your report shall be a
word-processed document submitted, preferably, in PDF format, which contains the following information:

1.​ Front matter. Title, names of team members.
2.​ Implementation Overview. A few paragraphs describing the parallelization details of your

implementations, including the specific items mentioned above.
3.​ Results. For each dataset, include a subsection which contains the following information:

a.​ Any specific information about the settings (if any) used to run PageRank on this dataset.
b.​ A concise discussion on any differences in output between your parallel implementations and

the original version.
4.​ Overall performance summary. Provide a short overall summary of the observed timing results. Include

the timing results from the original version, the Xeon Phi version, and the GPU version.
5.​ Appendix. README. Attach your README file with instructions on compiling and running your program

as an appendix to your report.

Extra Credit
Two 20% bonuses will be given: one for the fastest Xeon Phi implementation, and one for the fastest GPU
implementation. Both will be tested on the SNAP LiveJournal dataset. Both bonuses can be given to the same
team if appropriate. Implementations must produce correct output! We may also test your implementations
on a few other SNAP datasets that exceed the size of SNAP, so we encourage testing on them (find the
largest directed graph in SNAP and see what you can do for it!)

Tips for Success
●​ Start Early!
●​ Meet your team members right away, exchange contact info (email, phone, etc.).
●​ Compare calendars to find times to work together. You will need more than your three hours of lab per

week to complete this project.
●​ Have a kickoff meeting with all members to go over the code. 466 members should discuss the flow of

the program and answer questions about implementation decisions. 419 members should make every
effort to understand the original implementation.

●​ Delegate tasks for each team member so that nobody is wondering what to do.
●​ Set intermediate milestones, and meet them.
●​ Meet Often!
●​ Use a collaboration tool (e.g. subversion, git, bitbucket, etc.), but please don’t share publicly.

Handin Instructions
Hand in using the command:
handin clupo 419_pagerank <all source files> report.pdf README
One submission per team!

PLEASE NOTE: The full submission for this assignment goes to the CSC 419 handin. The submissions will be
shared/graded by both instructors and the teams will receive the same grade for each of the classes.

	CPE 419/466 - Fall 2015 - Combined Project
	Overview
	Assignment Preparation
	Data
	Small Datasets

	Assignment
	Method
	Refactoring/Recompilation
	Profiling
	Memory Layout Optimization
	Xeon Phi Implementation
	GPU Implementation
	Memory Movement Optimization
	Performance Requirement

	Report
	Extra Credit
	Tips for Success
	Handin Instructions

