

! This is the manual for 5.0. If using OSA 6.x+, see OSA 6.0 Manual instead !

Contents

1.​ Documentation
2.​ External links
3.​ OSA wizard
4.​ Usage
5.​ Implementation
6.​ Grid
7.​ Table
8.​ Example scenes & utilities (separate manual)
9.​ Playmaker support
10.​Known issues, workarounds
11.​Tips
12.​FAQ
13.​Help improve OSA by leaving a review 😊

1.​Documentation

🚩Non-english speakers: Install Translate+ for Google Docs. It works surprisingly well!

In v4.1, the abbreviation SRIA (historically, ScrollRectItemsAdapter) was changed to OSA: they can be used
interchangeably, but in this document, we stick to OSA

The code reference is an online resource that can be accessed via 'Tools->OSA->Code reference' menu item. In previous
versions, the menu item was called frame8. It changed to Tools in v4.3.

For v3.0 and higher, there's a quick start video guide on YouTube, which can be accessed via 'Tools->OSA->Quick start
video'. This video is still relevant even for v4.0-v4.3, although there are a few differences which are pointed out in the
migration guide

Starting with v4.3, OSA uses assembly definitions, so you can add a reference to the /Scripts/OSA.asmdef if you also use
them.

2.​External links

Applications using OSA

Migrate from 3.2 to 4.0-4.1, from 4.1 to 4.2, from 4.2 to 4.3, from 4.3 to 5.0, from 5.0 to 5.1, or from 5.x to 6.0. Note
that migrations need to be done incrementally. For ex., you can’t directly jump from 4.1 to 4.3.

In-browser demo || Android demo APK

Quick start video || Playmaker support video for v4.2+

Thread on Unity forum

Changelog

Manual for older versions

https://docs.google.com/document/d/1tlMIzRX1OFEusVAoHm14_wloXukOt9llohCQzmnNbts
https://gsuite.google.com/marketplace/app/translate+/212391231529
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
http://thefallengames.com/unityassetstore/optimizedscrollviewadapter/#applications_using_osa
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%203.2%20to%204.0.txt
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%204.1%20to%204.2.txt
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%204.2%20to%204.3.txt
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%204.3%20to%205.0.txt
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%205.0%20to%205.1.txt
https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Migration%20guide%20from%205.x%20to%206.0.txt
http://thefallengames.com/unityassetstore/optimizedscrollviewadapter/
https://www.dropbox.com/s/x4pkgp1aruy4m1u/ScrollRectItemsAdapter8%20-%20current%20-%20demo.apk?dl=0
https://youtu.be/rcgnF16JybY
https://www.youtube.com/watch?v=_pDMtYddOYk
https://forum.unity3d.com/threads/simple-optimized-scrollview-scrollrect-available-on-assetstore.395224/
http://thefallengames.com/unityassetstore/optimizedscrollviewadapter/Changelog.txt
https://docs.google.com/document/d/1exc3hz9cER9fKx2m0rXxTG0-vMxEGdFrd1NYdDJuATk/edit?usp=sharing

3.​OSA wizard

Starting with v3.2, a graphical interface is provided to help you generate a ScrollView from scratch, a scrollbar and an OSA
implementation based on 2 available templates: List or Grid.

See the workflow below

Create from scratch:

Choose horizontal or vertical and hit Create:

If you already have a ScrollRect in the scene, click here to open the "Implement OSA" window:

Choose whether to use a scrollbar and which existing implementation to use (or from which template to generate a new
one). If a scrollbar already exists, it'll be detected & linked automatically (you can still generate a new one and disable the

old one, if you want):

The scrollbar can be Left/Right or Top/Bottom, depending on the ScrollView's orientation:

Initially, there's no implementation that can be used in production, only example implementations. Click here to create a
new one:

Type a unique name and hit Generate:

The newly generated implementation will be auto-selected and, if a prefab property is detected on the used Params class,
it'll be exposed here as "Item prefab". If you just want a quick start and don't already have a prefab for the items, or if
you want to see what an example item prefab should look like, hit "Generate example for X" (the prefabs for lists and

grids differ from each other):

It'll be highlighted in the hierarchy. The BackgroundImage and TitleText children are just for visualization:

After you hit Initialize, the ScrollView is configured, the ScrollRect is disabled (you can safely remove it), the scrollbar is
generated and/or configured, some initial values are set for the Params and you can open the script for editing

("MyGridSRIA" in this case):

You can un-comment sections marked with /**/ or remove them if they won't be used (if you want to test the code, find

the following methods and remove or just keep them commented: OnBeforeRecycleOrDisableCellViewsHolder(),
GetViews(), MarkForRebuild()):

If you followed all the steps until now correctly, hit Play and you should see it in action:

4.​Usage

OSA, BaseParams and BaseItemViewsHolder are the 3 core classes in our small library dedicated to both optimize a Scroll
View and programmatically manage its contents.

You can use them both for a horizontal or vertical ScrollView.

OSA it’s an abstract, generic MonoBehaviour, which you need to extend and provide at least the implementation of
OSA.CreateViewsHolder() and OSA.UpdateViewsHolder().

It's recommended to manually go through the example code provided in MainExample.cs and SimpleExample.cs in order
to fully understand the mechanism. You’ll find detailed comments in core areas. You may even use this script directly
without implementing your own, in some very simple scenarios.

Show me the code! After you’ve implemented the custom OSA class managing the views according to your specific case,
adding/removing items from outside is more or less the same for any type of OSA. Lists have maximum flexibility, while
Grids can only use the ResetItems method for any data manipulation. The below code uses the SimpleExample from the
Demos pack to show adding of items in a List OSA:

When you use an OSA with multiple prefab types, adding/removing items from outside is similar:

5.​ Implementation

Follow these steps while constantly looking at how it’s done in the example code in SimpleExample.cs and optionally in
MainExample.cs

Here’s the normal flow you’ll follow if you’ve created a Scroll View using GameObject->UI->Scroll View or through OSA
wizard:

1.​ Create your own implementation of BaseItemViewsHolder, let's name it MyItemViewsHolder
2.​ Create your own implementation of BaseParams (if needed), let's name it MyParams

3.​ Create your own implementation of OSA<MyParams, MyItemViewsHolder>, let's name it MyScrollViewAdapter

4.​ Override Start(), call base.Start(), after which:

5.​ Call MyScrollViewAdapter.ResetItems(int count) once (and any time your dataset is changed) and the following
will happen:

●​ CollectItemsSizes() will be called (which you can optionally implement to provide your own sizes, if
known beforehand). This is not the only, nor the recommended way to provide the sizes, especially on
large data sets. More on that later.

●​ CreateViewsHolder(int) will be called for each view that needs creation. Once a view is created, it'll be
re-used when it goes off-viewport

−​ newOrRecycled.root will be null, so you need to instantiate your prefab), assign it and call
newOrRecycledViewsHolder.CollectViews(). Alternatively, you can call its
AbstractViewsHolder.Init(..) method, which can do a lot of things for you, mainly instantiate
the prefab and (if you want) call CollectViews().

−​after creation, only MyScrollViewAdapter.UpdateViewsHolder() will be called for it when its
represented item changes and becomes visible.

−​ (!) this method is also called when the viewport's size grows, thus needing more items to be
visible at once.

●​ MyScrollViewAdapter.UpdateViewsHolder(MyItemViewsHolder) will be called when an item is to be
displayed or simply needs updating:

−​ use newOrRecycled.ItemIndex to get the item index, so you can retrieve its associated model
from your data set

−​ newOrRecycled.root is not null here (given the ViewsHolder was properly created in
CreateViewsHolder(..)). It's assigned a valid object whose UI elements only need their values
changed (common practice is to implement helper methods in the viewsholder that take the
model and update the views themselves)

ResetItems() is also called when the viewport's size changes (like for orientation changes on mobile or window
resizing on standalone platforms)

6.​Grid

The documentation about implementing grids was initially created around the “Grid, horizontal layout, async items
download” demo from the Demos manual, because following an actual example makes it easier to both understand and
see how it works.

So not only is that manual describing that particular demo, but it also contains most of the information you’ll ever need
about the grids, including common questions.

7.​Table

The TableView manual covers the basics of implementing a TableView.

8.​Example scenes & utilities

The demos have their own document which can be accessed here.

There you’ll also find a list of all demos and their manuals.

https://docs.google.com/document/d/1FeIaLsvhHCRFQg8BaSBxyoOEYgzZjMoYkevv1l1eJ-0/edit#bookmark=id.w12qnswihdje
https://docs.google.com/document/d/1FeIaLsvhHCRFQg8BaSBxyoOEYgzZjMoYkevv1l1eJ-0/edit#bookmark=id.w12qnswihdje
https://docs.google.com/document/d/1FeIaLsvhHCRFQg8BaSBxyoOEYgzZjMoYkevv1l1eJ-0/edit?usp=sharing
https://docs.google.com/document/d/1FeIaLsvhHCRFQg8BaSBxyoOEYgzZjMoYkevv1l1eJ-0/edit#bookmark=id.w12qnswihdje

9.​Playmaker support

🚩Important note for OSA 5.0 and below: The README.txt in the Playmaker support folder didn’t

mention an error that you get due to ASMDEFs in Unity 2017.3 and up. The updated README is now
found here, where you can see the latest changes even before new OSA versions are released.

In version 4.2, Playmaker support was added. All the assets needed to implement OSA through Playmaker are in a
package under /Extra/PluginSupport/Playmaker for versions older than 4.3, and /PluginSupport/Playmaker for 4.3 and
up.

Check out the README file for how to import it.

Playmaker support only works for Unity 2017.1.0f3 and up + Playmaker 1.9.0 and up!

What you can do with Playmaker:

●​ Insert/Remove/Reset/Clear items, Smooth scroll to item index

●​ ListViews with arbitrary data and views structure (defined by you)

●​ GridViews
●​ Items of variable sizes, using ContentSizeFitter. Only available for ListViews

●​ Lazily-initializing data models (if using large amounts of items)

●​ Displaying large amounts of arbitrary data from XML using DataMaker, although DataMaker is a bit slow for more
than 10K items in our examples, so you need something faster than DataMaker if you want to display more items
(we support around 2 billion)

●​ Open our built-in DateTimePicker via a simple action and retrieve the picked date and time either in a string
variable or each datetime component (year, month, minute etc.) in an integer variable in your FSM

●​ Use the FSMs in the existing Controllers and Item prefabs as a guide to create your own, customized ones. It’s
easy!

Check the Playmaker YouTube tutorial at the beginning of this document for how to get started and useful tips!

https://thefallengames.com/unityassetstore/optimizedscrollviewadapter/playmaker/README.txt

10.​ Known issues, workarounds

- In several Unity versions (2018.4.9, 2018.4.34, 2019.4.10 and probably more), RectTransform doesn’t correctly report
its size inside Awake(). Some only behave like this if the RectTransform’s anchors are not brought together. This causes
an issue when trying to initialize OSA early in Awake as opposed to doing it in Start. The issue is that the ScrollView itself
reports a wrong size and is very subtle as it doesn’t impact most of the users. This is because OSA automatically detects if
the ScrollView’s size changes and calls a rebuild, but in case of grids (and probably other undiscovered edge-cases)
ScrollTo may not behave as expected during the same frame. Solution? Either initialize OSA in Start (general solution),
or use SmoothScrollTo with a 0 duration (particular solution only for this case).

- (Not related to OSA) Some Unity 2019.1 and 2019.2 have problems with setting an Image’s sprite property via script.
See Forum thread

- (Android, but maybe other platforms have this too): On some (generally older) Unity versions, on some scenes, even if
they’re simple, Gfx.WaitForPresent() as seen in Profiler eats up between 10 and 20 FPS, and we couldn't find out why.
Our fix was to build using the latest Unity at that moment, which was 2019.1. Email to lucian@thefallengames.com if you
have any input on this. This is a popular issue with Unity which seems to happen randomly.

- Not actually related to the plugin itself, but worth mentioning: some lower-end devices have terrible performance with
Open GL 3 and/or Auto Graphics API. If you experience oddly low FPS, untick Auto Graphics API and use Open GL 2
instead.

- In the ContentSizeFitter example scene: the prefab's Text will be oddly truncated on some Unity versions if its
Vertical Overflow property is set to Truncate. So, as a general rule, set it to Overflow when you have similar scenarios.
Likewise, if you have a horizontal ScrollView, the Horizontal Overflow property is the one to be modified.

- If you're planning to enable/disable game objects inside the CSF, then keep then disabled initially (in the prefab) if
they'll immediately be disabled anyway in the first frame after Init (and vice-versa: any GOs enabled by default in the
adapter's code, also keep them initially enabled in the prefab), because otherwise the adapter can't initialize correctly. ​
Concrete use case: Under the item prefab, you have a text child that has its gameObject disabled initially and it needs to
activate itself on click and show arbitrarily sized data. See this forum post for more info

- Some Unity versions have a bug with their RectMask2D implementation, so if you see some demos not clipping the items
inside the Viewport, you should replace it with a Mask+Image (the old way). We’ve found this to be the case for WebGL
builds of Unity 2018.1 and 2018.2 when the Canvas' space is not Overlay, but it’s a sure thing that this may also happen
on other Unity versions and/or build targets

- Some users will get a call stack size exceeded "RangeError" exception when building with High stripping for WebGL. You
should make sure to include the OSA’s namespaces manually in your link.xml. See this post (credits to @doctorpangloss)

11.​ Tips

- Use a Canvas as a parent of groups of frequently changing UI elements to separate them from the less frequently
changing ones. Canvases can be nested. More info: Link

- Use a RectMask2D instead of Mask. It speeds Scroll Views in Unity when you don’t need masking by a specific shape. Try
it, but make sure to test it on different platforms, as some Unity versions have a buggy implementation of it, as stated in
the Known issues section above.

https://forum.unity.com/threads/changing-image-sprite-from-script-is-faulty-in-2019-1-0f2-case-1146947.663478/
mailto:lucian@thefallengames.com
https://forum.unity.com/threads/optimized-scrollview-adapter-listview-gridview.395224/page-4#post-3525615
https://forum.unity.com/threads/optimized-scrollview-adapter-listview-gridview-playmaker-support.395224/page-7#post-4278724
https://create.unity3d.com/Unity-UI-optimization-tips

12.​ FAQ

1.​ How to use the examples without the DrawerCommandPanel?

Update 24.07.2018 for v4.1: DrawerCommandPanel is now decoupled from the examples, but we still don’t recommend
using the example scripts in production

See Example scenes & Utilities above

2.​ Why not use MonoBehaviour as a base class for the Items (AbstractItemViewsHolder)?

Performance.

The prefab used to instantiate the items can have any number of components on it.

You can re-use your MonoBehaviour, if there's where you're already retrieving the views (or perhaps setting them via
inspector). Look:

class MyVH : BaseItemViewsHolder​
{​
 public YourExistingMonoBehaviourType behaviour;​
​
 public override void CollectViews()​
 {​
 base.CollectViews();​
 behaviour = root.GetComponent<YourExistingMonoBehaviourType>();​
 }​
}

and when you'll bind the data to the views (in UpdateViewsHolder() in our case), you can simply use your existing
behavior the same way as before, just that now it's a field in the views holder:

viewsHolder.behavior.UpdateViews (<dataModel>).

3.​ How to do action on click/long-click?

You can borrow the code from any other scene that includes a specific action when an item is pressed.

The trick is to have a single method that handles the onClick of all items, but which is also passed the associated
viewsHolder, so you can retrieve the model knowing vh.ItemIndex.

Example: When creating the views holder:

MyViewsHolder vh =...;​
vh.button.onClick.AddListener(() => OnItemClicked(vh));

Long-clicking is handled the same way, and a utility script is provided for that, in case you don’t have your own. See the
SelectionExample script and its associated scene for this.
Also, in case of grids, cells are created for you, so in order to execute some code, like adding a listener, right after their
creation, override OnCellViewsHolderCreated.

4.​ How to make looping work when there are fewer items than what can be shown in viewport?

Solution 1: Duplicate your models so that the number of items which the adapter sees is always bigger than the
minimum needed (this number depends on several factors, like the viewport’s size and how your items’ size changes
based on their anchors, but in practice you’ll find that number to be roughly (minItemSize+spacing)/viewportSize + 1,
where minItemSize is the size of the smallest item that you’ll have, in case they can have different sizes).

Example of a duplicated list of 2 items, where the minimum displayed can be 4: [model1, model2, model1, model2,
model1, model2]

Solution 2: Enable\disable looping on count change, based on the content-to-viewport ratio. Let's say if content is less
than 1.3x the viewport's size, you disable looping.
You can retrieve this ratio using the extensions in IScrollRectProxy.cs.
You should choose a threshold ratio in a way that will always keep at least 1 item out of view.

5.​ Is it possible to add/remove items from UpdateViewsHolder?

Nope. UpdateViewsHolder it's not supposed to have the responsibility of deciding whether items should be
added/removed. It just binds data to the views. That's all. I'm pretty sure you can achieve whatever you're looking for
without the need to add/remove items from UpdateViewsHolder.

6.​ What's the purpose of separate calls to _Params.Data.Add and InsertItems? Is there any useful case
when they can be called without each other?

Update 24.07.2018 for v4.1: DataHelpers are now provided which do this for you, if you don’t need full flexibility

In short, the biggest advantage is to be able to display items whose model wasn’t yet retrieved completely (maybe you’re
downloading them one by one or just downloading them when needed, i.e. when first shown).

This is needed because OSA was from the very beginning designed to be as flexible as possible. The adapter itself doesn't
know about your list or how you store your data. It just asks for the items count and, optionally, their sizes (size meaning
height or width, depending on ScrollView's orientation). How you set the sizes is exemplified throughout the demo
scenes, as there are multiple ways of doing this, depending on how much variation in size you have in your data set +
what you prioritize more: CPU, memory, the speed of the ChangeItemsCount call etc.​
And put simply, you tell the adapter how many items there are and maybe their sizes, and that's all it needs to know in
order to decide when to call [Create/Update]ViewsHolder for you. The way you store your data is your implementation
detail, but enough utilities are already implemented for you in the Utils namespace, like the
BaseParamsWithPrefabAndData class. When you call _Params.Data.Add, you're just adding an item to the list. The adapter
should also be notified of this in order to update the list of sizes, update the content size and a lot of other things, that's
why a very rigid item adding/removing convention is needed.​
Alternatively (and this is what it's done in some of the demos), you can just create a helper method that does both of
these things.

7.​ What is frame8? There seems to be a separate set of classes contained in the frame8 namespace

It's our internal framework which is used in all of our projects (only a subset of it was included, to keep file count at
minimum).

For v4.1 and up, its functionality was completely separated under its own folder in /Scripts/frame8 and some
non-essential files were removed

8.​ How to scroll in both directions?

The Scrollbar solution for OSA is ScrollbarFixer, but it only works in the main scrolling direction.
We’ll take a vertical List as an example.

Scrolling in both directions is not yet implemented out of the box. The easiest way is to manually increase/decrease the
Content's localPosition.x based on your own calculations. You can have 2 arrow buttons for adding discrete
increments/decrements to localPosition.x.
However, the first quick solution may not be very satisfying, so you can alternatively experiment with adding a classic
horizontal ScrollRect as the parent of OSA, and make OSA's width large enough (at edit time, so constant) to encompass
enough of its children’s width.
Then add a usual horizontal Scrollbar, which will always be visible if you don’t manually disable/enable it through code
(because the OSA's width will be constant).
Make sure OSA has ForwardDragToPrents toggled.
Make sure the parent ScrollRect's content is OSA, and the viewport it's none (or it's set to ScrollRect itself).
Check Unity’s docs if you're not very familiar with the built-in ScrollRect. The difference between the docs and our case
is that you won't have a Viewport between the top ScrollRect and OSA.

Another solution is to use something very similar to the EdgeDragger script we include in some scenes (ContentSizeFitter
example, horizontal async example). This is a draggable button that allows manually dragging a UI element’s edge, so the
user will choose how large it’ll be. Of course, EdgeDragger may not have production-quality code, because it was only
intended to be used in the demos, but it’s very close to a final solution.

9.​ Why can’t I access Time.time or Time.deltaTime ? (Error: 'float' does not contain a definition for
'time')

Since v5.0, you can set Parameters.UseUnscaledTime to choose whether OSA can work even if the app’s time is paused or
not, so Time and DeltaTime properties were introduced and you should use those instead, for your own time-related
tasks/animations.
Also, Time property has this name intentionally to prevent you from using UnityEngine.Time by accident when typing just
Time . You should now use UnityEngine.Time explicitly if that’s your intention

10.​CollectItemsSizes doesn’t work

You're probably using BaseParamsWithPrefab. You need to either make your prefab's size to be smaller than any of the
items you'll ever have, or simply use BaseParams and manually add the Prefab property which you'll use in
CreateViewsHolder. BaseParamsWithPrefab's main purpose is to make the prefab control the DefaultItemSize, but if
you’re overriding it anyway, BaseParamsWithPrefab is not needed, maybe just as a convenience for storing the ItemPrefab
property for you.

In v5.1 (no ETA for publishing it yet) there's a PrefabControlsDefaultItemSize property in BaseParamsWithPrefab that
you'd disable to achieve the same effect. I attached the new file here (need to be a Verified OSA User) which should be
fine if you replace it in an OSA 5.0 project. And I actually recommend this instead. If the file is gone, request it via DM.

11.​How can I force a ListView to redraw a ViewsHolder whose model's data has changed? i.e. force-call

https://docs.unity3d.com/Manual/script-ScrollRect.html
https://discordapp.com/channels/562559159254384641/562575403424940043/670550445839876138

UpdateViewsHolder (which normally is called only when the holder becomes visible / is created)

Problem with relying on UpdateViewsHolder for this purpose is that if you're using ScheduleComputeVisibilityTwinPass in
it (like the ContentSizeFitter example does), it'll not work. So for this reason there's no built-in method that you can call
to have it call UpdateViewsHolder for you. But If you don’t use ScheduleComputeVisibilityTwinPass, then you’ll be fine
(a) calling UpdateViewsHolder manually, or (b) even have an UpdateViews method in the ViewsHolder which you call
directly.

If you use the ContentSizeFitter approach to have different item sizes, the solution is to use (b) and then call
ForceRebuildViewsHolderAndUpdateSize on it.

In v5.1, there’s ForceUpdateViewsHolderIfVisible, which takes care of everything, even rebuilding a single item’s size
when you use ScheduleComputeVisibilityTwinPass in UpdateViewsHolder.

12.​How can I both scroll to- and resize an item at the same time? Like resizing the item with its center as
pivot (currently, only the top and bottom edges can be stationary) AND centering it inside viewport:

This is only available to v5.1 and up (see other FAQs above for how to grab one if it’s not released yet).

You should be using ExpandCollapseAnimationState for the resizing animation, the same way it’s exemplified in
MainExample.cs (from the Demos extra package). You’ll also see here what extra fields to add to your model in order to
make it expandable, as well as the methods used in the code snippet at the end of this answer.

Either through inspector or in code, set Parameters.Animation.Cancel.SmoothScroll.OnSizeChanges = false. This makes
sure a SmoothScroll in progress won’t be cancelled by a size change in progress, which makes them run simultaneously.

Use the following code (it uses other methods from MainExample.cs, which presumably you’ve already copied in your
OSA implementation when added the resizing):

void ToggleItemFocus(int index)​
{​
​ float vpSize = (float)GetViewportSize();​
​ var model = <get model at index>;​
​ float itemNewSize = model.ExpandedAmount == 1f ? _Params.DefaultItemSize : GetModelExpandedSize(model);​
​ // Get half of the remaining viewport space as percentage​
​ float normalizedOffsetFromViewportStart = ((vpSize - itemNewSize) / vpSize) / 2f;​
​ SmoothScrollTo(index, <duration, same as resizing>, normalizedOffsetFromViewportStart, 0f, null, null, true);​
​
​ // "Click" the item through code​
​ var vh = GetItemViewsHolderIfVisible(index);​
​ OnExpandCollapseButtonClicked(vh);​
}

13.​How to calculate the ideal Image Pool capacity (FIFOCachingPool)?

There are several approaches. It requires hard-coding some values that may need to change in a year or 2. This is usually

done by each developer based on the info they have.

You can google the different ways you can get the estimated available free ram in bytes X, and then here’s one
suggestion:

float safePoolSizeBytes = Mathf.Min(X / 4f /*take only a quarter of the available ram*/, 250 * 1024 * 1024 /*And limit

it to 250mb because we're good citizens*/);​
float avgBytesPerImage = (4f/*PNG has 4 bytes per pixel*/ * averageWidth * averageHeight);​
​
int safePoolCapacity = (int)(safePoolSizeBytes / avgBytesPerImage);

14.​OSA initializes itself in Start(). Can I initialize it sooner? For example, I want to instantiate OSA from a
prefab and then immediately set the data on the same frame.

You can call OSA.Init() manually before setting the data. If you’re calling it later or simply don’t know if OSA did already
initialize itself, check OSA.IsInitialized before.

A second solution would be to override Awake() and call Init() there. OSA will detect that and skip auto-initialization in
its Start(). Note that a GameObject’s Awake() is called only if it’s active, or at the moment of first activation.

15.​How to have more items [created] than the number of visible ones? I.e. more than the OSA’s
calculated <visibleCount + 1>

OSA makes sure it only creates the minimum necessary objects to display your data. However, if you want to create
more, one way of doing it is simply enlarging the Viewport and also increasing the padding in those directions by the
same value. That way, your first item will still appear first, but it won’t immediately be recycled when goes out of the
view (assuming you’re using the default setup with a Mask on the ScrollView object), because that’s actually done when
the item goes out of the viewport; and since the viewport is now larger, items need to travel a greater distance before
being recycled, leading to what you want: more game objects are created than the visible ones.

Concrete example: Consider a vertical ScrollView. Viewport is initially identical to the ScrollView itself. Now move the
Viewport’s Top edge 200 units up and its Bottom edge 200 units down. Increase the ContentPadding Top/Bottom by the
same amounts. Voila! Look in the hierarchy at runtime to see the results.

16.​Is there a way to pre-instantiate a set number of list items (ie. 20-50) on Start() and have the items
persist even when I call ResetItems(0)?

OSA v5.0 has CreateBufferredRecycleableItems() and AddBufferredRecycleableItem(), which allow you to
pre-instantiate some items and keep them in memory to avoid any subsequent object creation/destruction. For this, a
special "bufferred recycleable items" internal list was created, apart from the "recycleable items", and it contains items
that won't be directly destroyed, unless they're "promoted" to the "recycleable items" list.

You can pass a custom index for the views holders: useful when having multiple prefabs and you want to distinguish
between them, since CreateViewsHolder(int) is called for these. OSA calls it with -1 by default, but in case of multiple
prefabs, you'll use a different negative value for each prefab type.

Something similar can also be achieved by setting a higher BaseParams.optimization.RecycleBinCapacity, which
previously didn't work, but was fixed in v5.0.

As for persisting those game objects between important events like count changes, there are some parameters to control
this under Params.optimization: KeepItemsPoolOnLayoutRebuild, KeepItemsPoolOnEmptyList. As of 19.07.2020, grids
ignore KeepItemsPoolOnLayoutRebuild if the layout has rebuilt results in a different number of cells per group.

Ok, but how about pre-instantiating items at edit-time and using those, i.e. no instantiate allocations to make at
runtime?

This is something that’ll be added in 5.1.3+ (not yet released ATM of writing - 06.11.2020). You’ll basically be able to
supply the instance of your root GameObject for a particular ViewsHolder inside CreateViewsHoler(), instead of the
prefab. This is done by using vh.InitWithExistingRoot():

[SerializeField]​
List<RectTransform> _PreMadeViews = null;​
​
/*some code here*/​
​
protected override void OnInitialized()​
{​
​ base.OnInitialized();​
​
​ // Add our pre-made views​
​ var vhs = CreateBufferredRecycleableItems(_PreMadeViews.Count);​
​ AddBufferredRecycleableItems(vhs);​
​
​ // We don't want the buffered items to be destroyed during the OSA's lifetime​
​ _Params.optimization.KeepItemsPoolOnEmptyList = _Params.optimization.KeepItemsPoolOnLayoutRebuild = true;​
}​
​
protected override MyItemViewsHolder CreateViewsHolder(int itemIndex)​
{​
​ var instance = new MyItemViewsHolder();​
​ if (itemIndex < 0)​
​ {​
​ ​ // Called because of our CreateBufferredRecycleableItems() call​
​
​ ​ var preMadeRoot = _PreMadeViews[_PreMadeViews.Count - 1];​
​ ​ _PreMadeViews.RemoveAt(_PreMadeViews.Count - 1);​
​ ​ instance.InitWithExistingRoot(preMadeRoot, _Params.Content, itemIndex);​
​ }​
​ else​
​ {​
​ ​ // Called by OSA when it needs more views to be created​
​
​ ​ // You can decide to throw an exception or simply fallback to instantiating a new one at runtime​
​
​ ​ //instance.Init(_Params.ItemPrefab, _Params.Content, itemIndex);​
​ ​ throw new InvalidOperationException("Increase the number of pre-instantiated items");​
​ }​
​
​ return instance;​
}​

17.​How to get the currently snapped/focused item when using Snapper8?

OSA 5.1 added OSASnapperFocusedItemInfo util script. The code is really simple and you can copy it directly into your OSA
implementation, but it’s provided as a separate script for convenience.

18.​How to ‘decorate’ the ScrollView with an additional view that’s not necessarily related to an item?

For example, show an advertisement-like view that scrolls with the content

The way it works is you’ll have an empty item in your data set that will act as the space required for the ad. The ad will
make use of the OSAContentDecorator, which is a versatile component.

Steps:

Add your ad as a child of Viewport;

Add OSAContentDecorator to it with this params:

Keep a reference to the decorator component in your OSA implementation - for ex., assign it to a field.

Keep your ad object deactivated from edit-time. Activate it at runtime (in code) before the first time you set the items.
This way, you won’t see it just sitting there. Alternatively, you can set the Inset to a value like -1000.

Let’s say the ad should appear below item 32 (33th item) as item 33 (34th item). This means that the original item 33 in
your set will become item 34, because we’ll insert the empty item at 33. If you keep your data in a plain C# list, use
list.Insert(adIndex, model). If you use DataHelpers, use dataHelper.Insert(adIndex, model). It’s better to add the
empty model in the C# list before submitting the change to the DataHelper, so OSA will just refresh once at init.

After OSA was initialized, we want the placeholder item to be resized so that the ad will fit into it. This can be done after
you’ve set the items the first time:

var adRT = decorator.transform as RectTransform;​
var adSize = adRT.rect.height; // or width, if using a horizontal scrollview​
RequestChangeItemSizeAndUpdateLayout(adIndex, adSize)

Override OnScrollPositionChanged and set keep the decorator’s inset updated like this:

protected override void OnScrollPositionChanged(double normPos)​
{​
 base.OnScrollPositionChanged(normPos);​
​
​ if (GetItemsCount() <= adIndex)​
​ ​ // Items not set yet or just too few items exist, which don't include the ad​
​ ​ return; ​
​
​ float adInset = (float)GetItemVirtualInsetFromParentStart(adIndex);​
​ decorator.SetInset(adInset);​
}

If you’re using variable-sized items, you’ll need to skip executing the size-changing code for the ad. Not only this, but any
change done to the placeholder is unnecessary, so you’ll need to not execute it at all:

protected override void UpdateViewsHolder(MyItemViewsHolder newOrRecycled)​

{​
​ if (newOrRecycled.ItemIndex == adIndex)​
​ ​ return;​
​
​ // Code for normal items ​
​ ...​
}

You may further want to disable the children of your item, if it’s an ad, and enable them otherwise (you cannot directly
disable/enable the item because OSA manages that). This is needed if your ad doesn’t cover the placeholder item
completely.

If OSAContentDecorator.SetInset() doesn’t exist, you’ll need to update OSA or (if the live version is not yet available)
contact us on discord to get a preview package as this method was added after v5.1.2.

That should be it.

19.​How to jump to the next/previous items when using snapping?

So snapping usually means you’ll have a Snapper8 script on your OSA object. This means that there’s always a snapped or
“focused” item. A good example is a gallery-like horizontal ScrollView where you’re focusing the middle item and you
have other items around it. A very common need is to be able to programmatically snap to the next item and that’s
where you’ll use the well-known SmoothScrollTo(), or just ScrollTo() if you want it to be immediate.

For example, you’re waiting in Update() for a key press, then get the currently focused item, and scroll to the next, if it
exists:

protected override void Update()​
{​
​ base.Update();​
​
​ if (Input.GetKeyUp(KeyCode.RightArrow))​
​ {​
​ ​ var snapper = GetComponent<Snapper8>();​
​
​ ​ float _;​
​ ​ var snappedVH = snapper.GetMiddleVH(out _);​
​ ​ if (snappedVH == null)​
​ ​ {​
​ ​ ​ // Probably there are no items​
​ ​ ​ return;​
​ ​ }​
​
​ ​ int nextItemIndex = snappedVH.ItemIndex + 1;​
​ ​ if (nextItemIndex < GetItemsCount())​
 ​​ {​
​ ​ ​ // No more items after the current one​
​ ​ ​ return;​
 ​​ }​
​
​ ​ bool cancelCurrentAnimationIfAny = true;​
​ ​ // We're passing snapper.viewportSnapPivot01 and snapper.itemSnapPivot01 to preserve the snap position

specified in the snapper (which may not be in the middle, if the user chooses to)​
​ ​ SmoothScrollTo(

​ ​ ​ nextItemIndex,

​ ​ ​ .3f,

​ ​ ​ snapper.viewportSnapPivot01,

​ ​ ​ snapper.itemSnapPivot01,

​ ​ ​ null,

​ ​ ​ null,

​ ​ ​ cancelCurrentAnimationIfAny

​ ​);​
​ }​
}

20.​How do I use the “New Input System”?

Unity documentation is fine, but we had trouble finding it. In any case, we tested OSA 5.3.1 with Unity 2019.4 LTS and it
works fine with either input system. You just need to carefully read the Installation and the first part of UI Support
sections. Once the documentation was found, it took 5 mins to set it up.

Note: for maximum compatibility, the demo scenes weren’t changed to support the new system, but you can easily
modify any of them - you only need to migrate the EventSystem object in them using the above instructions.

Small note: We initially tested it with 2019.1, but this time Unity didn’t automatically create/assign the default Input
Actions asset for us, so if you’re stuck with this version, check further down the UI Support page so set up your own.

21.​How to prevent the interaction with the items while scrolling/dragging? I want to prevent button
clicks while the content is moving.

A solution would be adding an invisible Image at the same level in the hierarchy as the Content game object and only
keeping it enabled while OSA.Velocity > 0. The result is the image will block any interaction with the Content object
while it's scrolling, but will still forward drag events to OSA so that dragging will work fine.

I imagine CutMovementOnPointerDown can be left ON, but if you have problems in your particular case, try turning it OFF.

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/Installation.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/UISupport.html

13.​ Help improve OSA by leaving a review

Your review will lead to more users purchasing the asset, and this indirectly provides the necessary resources to improve
it and keep up with your feature-requests!

And you'll have my everlasting gratitude. 😊

-- Lucian

http://u3d.as/xXQ

	🚩Non-english speakers: Install Translate+ for Google Docs. It works surprisingly well!
	🚩Important note for OSA 5.0 and below: The README.txt in the Playmaker support folder didn’t mention an error that you get due to ASMDEFs in Unity 2017.3 and up. The updated README is now found here, where you can see the latest changes even before new OSA versions are released.

